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Concurrently executing transactionsConcurrently executing transactions
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IF ... THENIF ... THEN

2

IF
! The DBMS is lacking the support of basic concurrency

 control (CC) services, or  
! The programmer is lacking the knowledge of how to

 make proper use of the DBMS supported CC services

THEN

 Data update operations may end up corrupting the DB 

 data content 
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Concurrency problems (anomalies)Concurrency problems (anomalies)
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! Lost update
! Dirty read
! Non-repeatable read
! Phantom read
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The lost update problemThe lost update problem
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Concurrency problems (anomalies)Concurrency problems (anomalies)
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! Lost update
! Dirty read
! Non-repeatable read
! Phantom read
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The dirty read problemThe dirty read problem
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account balance value 

that never existed!
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Concurrency problems (anomalies)Concurrency problems (anomalies)
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! Lost updates
! Dirty reads
! Non-repeatable reads
! Phantom reads
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Non-repeatable readsNon-repeatable reads
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Non-repeatable reads (NRR) vs. Non-repeatable reads (NRR) vs. 

dirty reads (DR)dirty reads (DR)
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! The transaction “feels” changes made by other 

  transactions (both NRR and DR)
!  Repeating the same read operation may yield different 

  results (both NRR and DR)
!  Dirty reads (DR): the transaction “feels” changes made 

  by other (concurrently running) transactions while the latter

  are still active (i.e. it is not yet known whether they will

  commit or rollback next)  
!  Non-repeatable reads NRR): the transaction “feels” 

  changes made by other (concurrently running) 

  transactions only after they commit
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Concurrency problems (anomalies)Concurrency problems (anomalies)
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! Lost updates
! Dirty reads
! Non-repeatable reads
! Phantom reads
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Phantom readsPhantom reads
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Phantom readsPhantom reads
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Non-repeatable reads (NR) vs. Non-repeatable reads (NR) vs. 

phantom reads (PR)phantom reads (PR)
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! Rows out of nowhere (phantoms) do appear in both NRR

 and PR resultsets
! In NRR the affected transaction is assumed to be using

 the same search criterion (WHERE ...), repeatedly
! PR is more general: the affected transaction launches 

 a new search criterion (WHERE ...) each one time.
! Phantom 'reads' because the targeted data/table regions

 may also involve 'ghost' rows (to be defined next)
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A.C.I.D. propertiesA.C.I.D. properties
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Atomicity

A transaction should execute in ...

... an ALL or NOTHING fashion

... Isolation

    from what other concurrently running transactions

    do to the database content

Durability

... a way in which its COMMIT is guaranteed to make

    persistent all the changes made to the database 

... Consistency

    with regard to all the DBMS imposed data integrity 

    rules
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ISO SQL TransactionISO SQL Transaction
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A & D: the underlying technologyA & D: the underlying technology
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ISO SQL TransactionISO SQL Transaction
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ISO SQL isolation levels definedISO SQL isolation levels defined
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Concurrency Control (CC): implementation ofConcurrency Control (CC): implementation of
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! Multi-Granular Locking (MGL)
! Multi-Versioning (MVCC)
! Optimistic (OCC) 
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Basic S-(Read) and X-(Write) locking schemeBasic S-(Read) and X-(Write) locking scheme
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CC: simplistic approachCC: simplistic approach
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READ UNCOMMITTED:

READ COMMITTED:

REPEATABLE READ and SERIALIZABLE:

!  No S-lock protection for reading, long duration X-locks

!  Short duration S-locks, long duration X-locks

!  Long duration S- and X-locks
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A picture's worth a thousand wordsA picture's worth a thousand words
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Dirty read with locks...Dirty read with locks...

S-lock

X-lock

S-lock?

Waits!

... problem resolved!

22
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Lost update with locksLost update with locks

S-Lock

S-Lock

X-Lock?

Waits!
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Lost update with locksLost update with locks

S-Lock

S-Lock

Waits
Waits

... one of (A,B) need be rolled back
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Lost update with locks: sensitive updatesLost update with locks: sensitive updates

Using ANSI/ISO SQL, the “lost update” scenario is implemented 

with transactions A and B making use of (single) SQL UPDATE

statements, instead of conducting (separate) READ and WRITE 

operations, e.g.:

     UPDATE Accounts SET balance = balance – 200

WHERE acctID = 100;

In most of today's DBMS's:  lock-based CC protection is in 

effect, and the above gets resolved in a deadlock-free manner... 

  

24

...resolved?
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Lost update with locks: problem resolved?Lost update with locks: problem resolved?

! Concurrent transactions involving more than one

 sensitive update SQL statements, plus
! Clumsy programming at the application side...

...may very well lead to having the lost update anomaly appear,

   even when lock-based concurrency control is implemented

   at the server side.

The solution to the problem: the system's state need be carefully

inspected, in systematic way, following the execution of each one

(any) SQL statement: GET DIAGNOSTICS 

25
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GET DIAGNOSTICSGET DIAGNOSTICS

! part of the ISO SQL Standard
! implemented in MySQL v5.6, and MariaDB

e.g. in  MySQL v5.6 (to be considered during the HoL session):

GET DIAGNOSTICS @rowcount = ROW_COUNT;

GET DIAGNOSTICS CONDITION 1 @sqlstate = RETURNED_SQLSTATE, 

@sqlcode = MYSQL_ERRNO ;

SELECT @sqlstate, @sqlcode, @rowcount;

26
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Multi-granular locking scheme (MGL) Multi-granular locking scheme (MGL) 
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Martti Laiho
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Concurrency control: implementation ofConcurrency control: implementation of
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! Multi-Granular Locking (MGL)
! Multi-Versioning (MVCC)
! Optimistic (OCC) 
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MVCC: motivationMVCC: motivation

!  Want to read uncommitted, but dot not wish to

  compromise on data consistency
!  Equivalently: wish to conduct data reading on a

  (logical) snapshot of the DB content, taken at

  begin time of the read-only transaction

A database where several tables updated frequently:

29
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MVCC: in simple termsMVCC: in simple terms
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!  The DB server makes use of timestamps to maintain

  history chains (versions), one for each row that is being 

  updated
!  Considering the above, any one transaction may

  either read the latest committed version of each row

  at read time (READ COMMITTED), or the latest committed 

  version of each one row at its (transaction) begin time 

  (SNAPSHOT)

Consequently, readers and writers do not block each other:

improved performance

* extra overhead, or...
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Snapshot isolation (SI)Snapshot isolation (SI)
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!  Improved performance (readers and writers

  do not block each other, fewer deadlocks)

!  Write-write conflicts are handled by policies that depend 

    on the DBMS used: 

   (a) ORACLE uses some type of locking; the second 

       writer waits, 

   (b) under SolidDB, the first writer is the only one who

       is allowed to commit 
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SI: ghosts and phantomsSI: ghosts and phantoms
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!  A transaction never accesses phantom rows, i.e. rows 

  that have been inserted by other transactions after its

  begin time(stamp): compare/contrast with MGL

!  A transaction may access ghost rows, i.e. rows that have

  been deleted or updated by other transactions after its 

  begin time(stamp): compare/contrast with MGL
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SI and serializabilitySI and serializability
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!     SI is not appropriate for implementing the 

     ISO SERIALIZABLE isolation level
!     MySQL uses it only for implementing the 

     REPEATABLE READ isolation level 

Example*

T1:  copies x into y

T2:  copies y into x

Initially: (x,y) = (8,10)

Possible outcomes

Under ISO SERIALIZABLE: (8,8), (10,10)

With SI: (8,8), (10,10), (10,8)

Philip A. Bernstein and Eric Newcomer, Principles of Transaction Processing, 2nd Edition, Morgan Kaufmann, 2009*
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MVCC implementation: OracleMVCC implementation: Oracle
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scn: system change 

number
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MySQL/InnoDB CC implementationMySQL/InnoDB CC implementation

!  READ UNCOMMITTED: MVCC (read latest written)
!  READ COMMITTED:      MVCC (read latest committed)
!  REPEATABLE READ:    MVCC (snapshot isolation)
!  SERIALIZABLE:             MGL (MV with long locks on the 

                                          latest version of the rows read/written)

35
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Optimistic Concurrency Control (OCC)Optimistic Concurrency Control (OCC)
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!  Appropriate for situations where DB data are cached

  outside  the DB server's cache memory 
!  The application reads data from the (remote) cache

  memory in an optimistic way (i.e. hoping that the

  corresponding DB server residing data have not been

  altered/updated in the meantime)
!  Variations exist (e.g. MS-SQL Server's optimistic with

  values, and optimistic with versions)
!  Original OCC (Phyrrho DBMS): all changes made to data

  by a transaction are kept separate from the database and they

  get registered to/synchronized with the latter at commit time 
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QuestionsQuestions

37

?



                                           SQL Transactions  (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI)                          Page  No.  

Getting ready for the HoL sessionGetting ready for the HoL session
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The DBTechNET DebianDB VM


