2 ¢ S Lifelopg
T o R Learning
S o oy Programme

DBTech VET / DBTechNet
SQL Transactions*

Database Transactions Summit 2013
HAAGA-HELIA University of Applied Sciences,
4 September 2013, Helsinki, Finland.

M. Laiho, D.A. Dervos, K. Silpio
www.dbtechnet.org

The educational and training content of the present DBTech VET tutorial and hands-on laboratory session are licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en).
Attributions must refer to the DBTech VET “SQL Transactions” course as a whole, in accordance with the directions provided

at htto://lwww.dbtechnet.ora/DBTechVET-CC-attributions-auidelines.PDF.

n**' Llfelong

Concurrently executing transactions S | - ning

ol 3 Programme

Client-1 Client-2 : Client-n
Server

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 1

) Lifelong
IF ... THEN s
o Programme

IF

* The DBMS is lacking the support of basic concurrency
control (CC) services, or

* The programmer is lacking the knowledge of how to
make proper use of the DBMS supported CC services

THEN
Data update operations may end up corrupting the DB

data content

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 2

A = ifelon
Concurrency problems (anomalies) - it

Programme

* Lost update

* Dirty read

* Non-repeatable read
* Phantom read

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 3

REEE Lifelong
The lost update problem Learning

s Programme

"Tellers”

transaction A transaction B

0 account x: 0]
LN PN

balance 1000 €

“T will take 200 €” “T will take 500 €7

1. Read accc)unt‘x

2. Read account x

3. balance = balance -200

4. balance = balance -500

A

N
7\

5. Write account x

Iy

Lost update! 6. Write account x

time

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 4

A = ifelon
Concurrency problems (anomalies) - it

Programme

* Lost update

* Dirty read

* Non-repeatable read
* Phantom read

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 5

2 o - REEE Lifelong
The dirty read problem R i
o A Programme

transaction A transaction B
00 sccourtx 00
e balance 1000 € P
“What is the current balance?” “T withdraw 500 €”
» Read the balance of account x
balance = balance - 500
- Update the balance of
Read the balance account x
of account x

account balance value
that never existed!

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 6

A = ifelon
Concurrency problems (anomalies) - it

Programme

* Lost updates

* Dirty reads

* Non-repeatable reads
* Phantom reads

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 7

OO *p**' Llfelong
Non-repeatable reads e -
a s Programme

transaction A transaction B
010 0100
N\ N\

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 8

o o REEE Lifelong
Non-repeatable reads e -
a s Programme

transaction A transaction B
010 010
N\ N\

1. SELECT ... FROM table I
WHERE ... ; |

result set1 € --< |

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 8

20
Non-repeatable reads

transaction A

1/

N\

1. SELECT ... FROM table I |
WHERE ... ; | |

Lifelong
Learning
Programme

transaction B

i/

PN

2. UPDATE table

result set1
< | |

SETc=..
WHERE ... ;
DELETE FROM table

WHERE ... ;

COMMIT.

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 8

20
Non-repeatable reads

transaction A

1/

N\

1. SELECT ... FROM table
WHERE ... ;

result set1

3. SELECT ... FROM table
WHERE ... ;

4. COMMIT,

| XXX

result set2 '

Lifelong
Learning
Programme

transaction B

i/

PN

2. UPDATE table
SETc=..
WHERE ... ;
DELETE FROM table

WHERE ... ;

COMMIT:

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 8

Non-repeatable reads (NRR) vs. 5 Ef;gngm
dirty reads (DR)

* The transaction “feels” changes made by other
transactions (both NRR and DR)

* Repeating the same read operation may yield different
results (both NRR and DR)

* Dirty reads (DR): the transaction “feels” changes made
by other (concurrently running) transactions while the latter
are still active (i.e. it is not yet known whether they will
commit or rollback next)

* Non-repeatable reads NRR): the transaction “feels”
changes made by other (concurrently running)
transactions only after they commit

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 9

A = ifelon
Concurrency problems (anomalies) - it

Programme

* Lost updates

* Dirty reads

* Non-repeatable reads
* Phantom reads

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 10

o o * * Llfelong
Dhantom rends i)
> 9 > Programme

transaction A transaction B
010 0100
N\ N\

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 1"

o *t*** Llfe|0ng
Phantom reads B
> 9 > Programme

transaction A transaction B
2\ 2\
1. SELECT ... FROM table o |
WHERE ... ; | |
~< | |
Lo’ | |
result set1 A
- |
|
|
|

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 1"

o *t*** Llfe|0ng
Phantom reads e
> o > Programme

transaction A transaction B
P P
| I
1. SELECT ... FROM table o I
WHERE ... : | |
-
| | 2. INSERT INTO table (..)
result set1 | | =====\VALUES(..);

— |

<@ - - - = = = = = UPDATE ...

| SET col = <matching value>
| WHERE ..

COMMIT;

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 1"

*-*** Lifelong
Phantom reads bt
< i Programme

transaction A transaction B
PN P
| I
1. SELECT ... FROM table (1 I
WHERE ... : /I.| |
a--- | ' 2. INSERT INTO table (..)
result set1 | | VALUES (...);
.< \ |
N | | UPDATE ...
' | | SET col = <matching value>
K WHERE ..
3. SELECT ... FROM table, ! |
WHERE ... : ' COMMIT:

’

y

result set2

4. COMMIT

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 1"

Non-repeatable reads (NR) vs. e Ef;igm
phantom reads (PR)

* Rows out of nowhere (phantoms) do appear in both NRR
and PR resultsets

* In NRR the affected transaction is assumed to be using
the same search criterion (WHERE ...), repeatedly

* PR is more general: the affected transaction launches
a new search criterion (WHERE ...) each one time.

* Phantom 'reads' because the targeted data/table regions
may also involve 'ghost' rows (to be defined next)

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 12

RERA Lifelong
P [carning
Programme

A.C.1.D. properties

A transaction should execute in ...

Atomicity
... an ALL or NOTHING fashion

.. Consistency

with regard to all the DBMS imposed data integrity
rules

.. Isolation

from what other concurrently running transactions
do to the database content

Durability

... a way in which its COMMIT is guaranteed to make
persistent all the changes made to the database

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 13

ISO SQL Transaction

***** Llfelong
P [carning
ol 3 Programme

[{SET | START} TRANSACTION [READ ONLY | READ WRITE]
ISOLATION LEVEL {READ UNCOMMITTED |
READ COMMITTED |
REPEATABLE READ |

Isolation ~=--="c-mmmmmmmmemmmme=mmmeeee- SERIALIZABLE }
[if.]]
SET {UNIQUE | REFERENCIAL} CONSTRAINTS

{DEFERRED | IMMEDIATE }

[LOCK TABLE ...]
SELECT ...

Consistency if.. \

- by DBMS INSERT ...

- logical f T

9 UPDATE Database

if ...

oo DELETE ... ’

omicity ... Transaction log(s)
~~ SAVEPOINT spn
Durability

-
-
-

if ...

COMMIT | ROLLBACK

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI)

Page No. 14

Lifelong
Learning
Programme

A & D: the underlying technology

Listener Applications (clients)
listening for connection

requests of clients O $ $ $ $
O OO ... Cg Service threads

Control Cache § ¢ 9 (agents)
Transaction |
control, et : Cache of data pages Data Cache
| for fast data processing (Bufferpool)
o !. minimizing disk I/O LRU protocol for freeing pages
Log Cache |

Cache of before an
after images of row
of active transactio

T lCheckpoint

Data Files on disks
building the tablespace for tables

WAL data pages and indices
Lvrﬁti'fc',]ead“gg'"g fir o Log Archive (for history)
 -—>|7 7 k—
\ e
R — W E——
Circular chain of Transaction Logs =---------—--~- l

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 15

ISO SQL Transaction

[{SET | START} TRANSACTION

***** Llfelong
P [carning
ol 3 Programme

[READ ONLY | READ WRITE]

ISOLATION LEVEL {READ UNCOMMITTED |
READ COMMITTED
REPEATABLE READ

iy SSeSessssessssssscsssccososssso=s SERIALIZABLE }
[if.]]
SET {UNIQUE | REFERENCIAL} CONSTRAINTS
{DEFERRED | IMMEDIATE }
[LOCK TABLE ...]
SELECT ...
Consistency if .. ‘\
- by DBMS INSERT ...
- logical f T
9 UPDATE Database
if ...
oo DELETE ... ’
omicity ... Transaction log(s)
SAVEPOINT spn
Durability

-
-
-

COMMIT | ROLLBACK
if ...

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI)

Page No. 16

Lifelong
Learning
Programme

IS0 SQL isolation levels defined

Anomalies: Lost Update Dirty Read Nonrepeatable Phantom
Isolation Reads Reads
Level:
READ UNCOMMITTED NOT possible Possible ! Possible ! Possible !
READ COMMITTED NOT possible NOT possible Possible ! Possible !
REPEATABLE READ NOT possible NOT possible NOT possible Possible !
SERIALIZABLE NOT possible NOT possible NOT possible NOT possible

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 17

Concurrency Control (CC): implementation of Ef;gngm

* Multi-Granular Locking (MGL)
* Multi-Versioning (MVCC)
* Optimistic (OCC)

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 18

Lifelong
Learning
Programme

Basic S-(Read) and X-(Write) locking scheme

Compatibility of S and X locks: Locking granularity:
Lock of transaction A to object 0
are eXclusive
Lock - - page T | |
request of Shared |Grant Wait ! jrts |
transaction B Row-level ||***
toobjecto |eXclusive |Wait ! [Wait ! ' '

- S-lock grants read access to object
- X-lock grants write access to object
- X-lock request after getting S-lock is called

as lock promotiord

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 19

Q = " _aw Lifelong
CC: simplistic approach e
o Programme

READ UNCOMMITTED:

* No S-lock protection for reading, long duration X-locks

READ COMMITTED:

* Short duration S-locks, long duration X-locks

REPEATABLE READ and SERIALIZABLE:

* Long duration S- and X-locks

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 20

REEE Lifelong
A picture's worth a thousand words vt

2 Programme

PHENOMENA

| Phantom B #

| Non-repeatable read |—>

---_--_----------_-’

The level of integrity protection rises

The degree of blocking increases

(]
= :
: () o :
| Dirty read 1) @ o w |
3 - 2 |
m = < N :
E = re A :
= a= w < !
% 35 : : |
52 O 7% 7 :
x> '
. SQL-92 TRANSACTION ISOLATION LEVELS
Lock Durations
Exclusive Locks long long long long
Shared Locks not used short long long
(read locks) (based on the predicate)

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 21

REEE Lifelong
Dirty read with locks... i)
= o Programme

transaction A transaction B

D‘:”] account x: D‘:”]
P Pa—

balance 1000 €

“What 1s the current balance?” “T withdraw 500 €”

S-lock

» Read the balance of account x

balance = balance - 500

X-lock
- Update the balance of
Read the balance S-lock? 4/' account x
of account x B
Waits! L ROLLBACK
time

... problem resolved!

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 22

Lost update with locks B

Programme

transaction A transaction B

0[] account x: 0[]
PN PN

balance 1000 €

“T will take 200 €7 “T will take 500 €7
S-Lock
1. Read account x S-Lock X
2. Read account x
3. balance = balance -200
X-Lock? / 4. balance = balance -500
5. Write account x Waits! ” . |
! 6. Write account x

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 23

Lifelong
Lost update with locks B
o Programme

transaction A transaction B

0[] account x: 0[]
PN PN

balance 1000 €

“T will take 200 €” “T will take 500 €”

S-Lock
1. Read account x S-Lock X

2. Read account x

3. balance = balance -200
4. balance = balance -500

N
1 X-Lock?

5. Write account x

Waits

Waits! 6. Write account x

T

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 23

Lifelong
Learning
Programme

Lost update with locks

transaction A transaction B

0[] account x: 0[]
PN PN

balance 1000 €

“I will take 200 €” “T will take 500 €”

S-Lock
1. Read account x S-Lock X

2. Read account x

3. balance = balance -200
4. balance = balance -500

5. Write account .
reaccoultx Waits

F Y

v Waits 6. Wnte account x

... one of (A,B) need be rolled back

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 23

Lost update with locks: sensitive updates - b

Programme

Using ANSI/ISO SQL, the “lost update” scenario is implemented
with transactions A and B making use of (single) SQL UPDATE

statements, instead of conducting (separate) READ and WRITE
operations, e.g.:

UPDATE Accounts SET balance = balance — 200
WHERE acctID = 100:;

In most of today's DBMS's: lock-based CC protection is in
effect, and the above gets resolved in a deadlock-free manner...

...resolved?

SQL Transac tions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 24

7, H Lifelon
Lost update with locks: problem resolved? - bl

Programme

* Concurrent transactions involving more than one
sensitive update SQL statements, plus
* Clumsy programming at the application side...

...may very well lead to having the lost update anomaly appear,
even when lock-based concurrency control is implemented
at the server side.

The solution to the problem: the system's state need be carefully
iInspected, in systematic way, following the execution of each one
(any) SQL statement: GET DIAGNOSTICS

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 25

) Lifelong
GET DIAGNOSTICS Bl
S Programme

* part of the ISO SQL Standard
* implemented in MySQL v5.6, and MariaDB

e.g. in MySQL v5.6 (to be considered during the HoL session):

GET DIAGNOSTICS @rowcount = ROW_COUNT;

GET DIAGNOSTICS CONDITION 1 @sqlstate = RETURNED_SQLSTATE,
@sqlcode = MYSQL_ERRNO ;

SELECT @sqlstate, @sqlcode, @rowcount;

SQL Transac tions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 26

REEE Lifelong
Multi-granular locking scheme (MGL) phic)

s Programme

- Sample variants of lock compatibility matrices

LOCk 8! cmules. Lock Lock already granted to some other process
latabas requested: IS IX S SIX X
aatabase IS grant grant grant grant wait

IX grant grant wait wait wait
: . X S grant wait grant wait wait
(tablesp CIC(,’) SIX grant wait wait wait wait
X wait wait wait wait wait
table ——» SIX=8 +IX
bt g
(extent) [1. Intent locks
exien .
> IS for S on row
1. IX for X on row
page
I — 2.
row Lock on row Lock Lock already granted to some other process
requested: none S U X
S grant grant grant’ wait
U grant grant wait wait
X grant wait wait wait
Shared locks (S) allow reading.
eXclusive locks (X) allow writing and
are kept up to end of transaction
_ eliminating lost updates.
Other locks on index ranges, schemas
SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 27

7 H = Lifelon
Concurrency control: implementation of - el

Programme

* Multi-Granular Locking (MGL)
* Multi-Versioning (MVCC)
* Optimistic (OCC)

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 28

- - - Lifelong
MVCC: motivation - ebtesic A

Programme

A database where several tables updated frequently:

* Want to read uncommitted, but dot not wish to
compromise on data consistency

* Equivalently: wish to conduct data reading on a
(logical) snapshot of the DB content, taken at
begin time of the read-only transaction

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 29

RERA Lifelong
P [carning
Programme

MVCC: in simple terms

* The DB server makes use of timestamps to maintain
history chains (versions), one for each row that is being
updated

* Considering the above, any one transaction may
either read the latest committed version of each row
at read time (READ COMMITTED), or the latest committed
version of each one row at its (transaction) begin time
(SNAPSHOT)

Consequently, readers and writers do not block each other:
improved performance

* extra overhead, or...

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 30

¢ = - Lifelong
Snapshot isolation (SI) “ Learning
o Programme

* Improved performance (readers and writers
do not block each other, fewer deadlocks)

* Write-write conflicts are handled by policies that depend
on the DBMS used:

(a) ORACLE uses some type of locking; the second

writer waits,
(b) under SolidDB, the first writer is the only one who

Is allowed to commit

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 31

SI: ghosts and phantoms Bl

Programme

* A transaction never accesses phantom rows, i.e. rows
that have been inserted by other transactions after its
begin time(stamp): compare/contrast with MGL

* Atransaction may access ghost rows, i.e. rows that have
been deleted or updated by other transactions after its
begin time(stamp): compare/contrast with MGL

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 32

¢ " T g Lifelong
-~ %] SI and serializability - Learning

Programme

* Slis not appropriate for implementing the
ISO SERIALIZABLE isolation level

* MySQL uses it only for implementing the
REPEATABLE READ isolation level

Example*

T1: copies x intoy
T2: copiesy into x
Initially: (x,y) = (8,10)

Possible outcomes
Under ISO SERIALIZABLE: (8,8), (10,10)
With SI: (8,8), (10,10), (10,8)

*Philip A. Bernstein and Eric Newcomer, Principles of Transaction Processing, 2nd Edition, Morgan Kaufmann, 2009

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 33

REEA Lifelong
MVCC implementation: Oracle Learring

5 Programme

original row
location on a latest committed
YOW VErsion
omdpdate Table PEY™ Temporayspace
action: 7 ’,:'
/ 1. copy the row Re /
" 1 3 1I
2. "lock" the row I ; 1| "G o
----------- - pscn HA---~
3. update the row... ||*"" T All conc%ment
I | 4" transactions
C 5o 1| il see onl
Commit will see only
a copy in the
Chain of chain, either the
previous row latest committed
versions in the ("READ COMMITTED™)
scn timestamp or the latest
order committed at start
of the transaction
(SNAPSHOT)

scn. system change
number

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, Fl) Page No. 34

o - - Lifelon
MySQL/InnoDB CC implementation e Ceaming

READ UNCOMMITTED: MVCC (read latest written)
READ COMMITTED: MVCC (read latest committed)
REPEATABLE READ: MVCC (snapshot isolation)
SERIALIZABLE: MGL (MV with long locks on the

latest version of the rows read/written)

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 35

Optimistic Concurrency Control (OCC) - b

Programme

* Appropriate for situations where DB data are cached
outside the DB server's cache memory

* The application reads data from the (remote) cache
memory in an optimistic way (i.e. hoping that the
corresponding DB server residing data have not been
altered/updated in the meantime)

* Variations exist (e.g. MS-SQL Server's optimistic with
values, and optimistic with versions)

* Original OCC (Phyrrho DBMS): all changes made to data
by a transaction are kept separate from the database and they
get registered to/synchronized with the latter at commit time

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 36

S Lifelong
Questions i}
O o Programme

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 37

Getting ready for the Hol session - ek

Programme

The DBTechNET DebianDB VM

SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No. 38

