
 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

DBTech VET / DBTechNet

SQL Transactions*

Database Transactions Summit 2013
HAAGA-HELIA University of Applied Sciences,

4 September 2013, Helsinki, Finland.

M. Laiho, D.A. Dervos, K. Silpiö

www.dbtechnet.org

The educational and training content of the present DBTech VET tutorial and hands-on laboratory session are licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en).

Attributions must refer to the DBTech VET “SQL Transactions” course as a whole, in accordance with the directions provided

at http://www.dbtechnet.org/DBTechVET-CC-attributions-guidelines.PDF.

*

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrently executing transactionsConcurrently executing transactions

1

Client-1 Client-nClient-2

Server

Database

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

IF ... THENIF ... THEN

2

IF
! The DBMS is lacking the support of basic concurrency

 control (CC) services, or
! The programmer is lacking the knowledge of how to

 make proper use of the DBMS supported CC services

THEN

 Data update operations may end up corrupting the DB

 data content

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency problems (anomalies)Concurrency problems (anomalies)

3

! Lost update
! Dirty read
! Non-repeatable read
! Phantom read

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

The lost update problemThe lost update problem

4

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency problems (anomalies)Concurrency problems (anomalies)

5

! Lost update
! Dirty read
! Non-repeatable read
! Phantom read

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

The dirty read problemThe dirty read problem

6

account balance value

that never existed!

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency problems (anomalies)Concurrency problems (anomalies)

 7

! Lost updates
! Dirty reads
! Non-repeatable reads
! Phantom reads

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable readsNon-repeatable reads

8

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable readsNon-repeatable reads

8

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable readsNon-repeatable reads

xxx

8

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable readsNon-repeatable reads

xxx

8

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable reads (NRR) vs. Non-repeatable reads (NRR) vs.

dirty reads (DR)dirty reads (DR)

 9

! The transaction “feels” changes made by other

 transactions (both NRR and DR)
! Repeating the same read operation may yield different

 results (both NRR and DR)
! Dirty reads (DR): the transaction “feels” changes made

 by other (concurrently running) transactions while the latter

 are still active (i.e. it is not yet known whether they will

 commit or rollback next)
! Non-repeatable reads NRR): the transaction “feels”

 changes made by other (concurrently running)

 transactions only after they commit

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency problems (anomalies)Concurrency problems (anomalies)

 10

! Lost updates
! Dirty reads
! Non-repeatable reads
! Phantom reads

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Phantom readsPhantom reads

 11

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Phantom readsPhantom reads

 11

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Phantom readsPhantom reads

 11

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Phantom readsPhantom reads

 11

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Non-repeatable reads (NR) vs. Non-repeatable reads (NR) vs.

phantom reads (PR)phantom reads (PR)

 12

! Rows out of nowhere (phantoms) do appear in both NRR

 and PR resultsets
! In NRR the affected transaction is assumed to be using

 the same search criterion (WHERE ...), repeatedly
! PR is more general: the affected transaction launches

 a new search criterion (WHERE ...) each one time.
! Phantom 'reads' because the targeted data/table regions

 may also involve 'ghost' rows (to be defined next)

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

A.C.I.D. propertiesA.C.I.D. properties

 13

Atomicity

A transaction should execute in ...

... an ALL or NOTHING fashion

... Isolation

 from what other concurrently running transactions

 do to the database content

Durability

... a way in which its COMMIT is guaranteed to make

 persistent all the changes made to the database

... Consistency

 with regard to all the DBMS imposed data integrity

 rules

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

ISO SQL TransactionISO SQL Transaction

 14

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

A & D: the underlying technologyA & D: the underlying technology

15

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

ISO SQL TransactionISO SQL Transaction

 16

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

ISO SQL isolation levels definedISO SQL isolation levels defined

 17

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency Control (CC): implementation ofConcurrency Control (CC): implementation of

 18

! Multi-Granular Locking (MGL)
! Multi-Versioning (MVCC)
! Optimistic (OCC)

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Basic S-(Read) and X-(Write) locking schemeBasic S-(Read) and X-(Write) locking scheme

 19

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

CC: simplistic approachCC: simplistic approach

 20

READ UNCOMMITTED:

READ COMMITTED:

REPEATABLE READ and SERIALIZABLE:

! No S-lock protection for reading, long duration X-locks

! Short duration S-locks, long duration X-locks

! Long duration S- and X-locks

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

A picture's worth a thousand wordsA picture's worth a thousand words

21

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Dirty read with locks...Dirty read with locks...

S-lock

X-lock

S-lock?

Waits!

... problem resolved!

22

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Lost update with locksLost update with locks

S-Lock

S-Lock

X-Lock?

Waits!

 23

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Lost update with locksLost update with locks

S-Lock

S-Lock

X-Lock?
Waits

Waits!

 23

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Lost update with locksLost update with locks

S-Lock

S-Lock

Waits
Waits

... one of (A,B) need be rolled back

 23

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Lost update with locks: sensitive updatesLost update with locks: sensitive updates

Using ANSI/ISO SQL, the “lost update” scenario is implemented

with transactions A and B making use of (single) SQL UPDATE

statements, instead of conducting (separate) READ and WRITE

operations, e.g.:

 UPDATE Accounts SET balance = balance – 200

WHERE acctID = 100;

In most of today's DBMS's: lock-based CC protection is in

effect, and the above gets resolved in a deadlock-free manner...

24

...resolved?

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Lost update with locks: problem resolved?Lost update with locks: problem resolved?

! Concurrent transactions involving more than one

 sensitive update SQL statements, plus
! Clumsy programming at the application side...

...may very well lead to having the lost update anomaly appear,

 even when lock-based concurrency control is implemented

 at the server side.

The solution to the problem: the system's state need be carefully

inspected, in systematic way, following the execution of each one

(any) SQL statement: GET DIAGNOSTICS

25

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

GET DIAGNOSTICSGET DIAGNOSTICS

! part of the ISO SQL Standard
! implemented in MySQL v5.6, and MariaDB

e.g. in MySQL v5.6 (to be considered during the HoL session):

GET DIAGNOSTICS @rowcount = ROW_COUNT;

GET DIAGNOSTICS CONDITION 1 @sqlstate = RETURNED_SQLSTATE,

@sqlcode = MYSQL_ERRNO ;

SELECT @sqlstate, @sqlcode, @rowcount;

26

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Multi-granular locking scheme (MGL) Multi-granular locking scheme (MGL)

27

Martti Laiho

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Concurrency control: implementation ofConcurrency control: implementation of

 28

! Multi-Granular Locking (MGL)
! Multi-Versioning (MVCC)
! Optimistic (OCC)

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

MVCC: motivationMVCC: motivation

! Want to read uncommitted, but dot not wish to

 compromise on data consistency
! Equivalently: wish to conduct data reading on a

 (logical) snapshot of the DB content, taken at

 begin time of the read-only transaction

A database where several tables updated frequently:

29

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

MVCC: in simple termsMVCC: in simple terms

30

! The DB server makes use of timestamps to maintain

 history chains (versions), one for each row that is being

 updated
! Considering the above, any one transaction may

 either read the latest committed version of each row

 at read time (READ COMMITTED), or the latest committed

 version of each one row at its (transaction) begin time

 (SNAPSHOT)

Consequently, readers and writers do not block each other:

improved performance

* extra overhead, or...

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Snapshot isolation (SI)Snapshot isolation (SI)

31

! Improved performance (readers and writers

 do not block each other, fewer deadlocks)

! Write-write conflicts are handled by policies that depend

 on the DBMS used:

 (a) ORACLE uses some type of locking; the second

 writer waits,

 (b) under SolidDB, the first writer is the only one who

 is allowed to commit

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

SI: ghosts and phantomsSI: ghosts and phantoms

32

! A transaction never accesses phantom rows, i.e. rows

 that have been inserted by other transactions after its

 begin time(stamp): compare/contrast with MGL

! A transaction may access ghost rows, i.e. rows that have

 been deleted or updated by other transactions after its

 begin time(stamp): compare/contrast with MGL

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

SI and serializabilitySI and serializability

33

! SI is not appropriate for implementing the

 ISO SERIALIZABLE isolation level
! MySQL uses it only for implementing the

 REPEATABLE READ isolation level

Example*

T1: copies x into y

T2: copies y into x

Initially: (x,y) = (8,10)

Possible outcomes

Under ISO SERIALIZABLE: (8,8), (10,10)

With SI: (8,8), (10,10), (10,8)

Philip A. Bernstein and Eric Newcomer, Principles of Transaction Processing, 2nd Edition, Morgan Kaufmann, 2009*

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

MVCC implementation: OracleMVCC implementation: Oracle

34

scn: system change

number

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

MySQL/InnoDB CC implementationMySQL/InnoDB CC implementation

! READ UNCOMMITTED: MVCC (read latest written)
! READ COMMITTED: MVCC (read latest committed)
! REPEATABLE READ: MVCC (snapshot isolation)
! SERIALIZABLE: MGL (MV with long locks on the

 latest version of the rows read/written)

35

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Optimistic Concurrency Control (OCC)Optimistic Concurrency Control (OCC)

36

! Appropriate for situations where DB data are cached

 outside the DB server's cache memory
! The application reads data from the (remote) cache

 memory in an optimistic way (i.e. hoping that the

 corresponding DB server residing data have not been

 altered/updated in the meantime)
! Variations exist (e.g. MS-SQL Server's optimistic with

 values, and optimistic with versions)
! Original OCC (Phyrrho DBMS): all changes made to data

 by a transaction are kept separate from the database and they

 get registered to/synchronized with the latter at commit time

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

QuestionsQuestions

37

?

 SQL Transactions (DBTech VET: Database Transactions Summit, Sept. 4, 2013, Helsinki, FI) Page No.

Getting ready for the HoL sessionGetting ready for the HoL session

38

The DBTechNET DebianDB VM

