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Transactions existed before they were invented 

§  What to do when you fail in the middle of doing something? 

§  How to ensure that the result is correct? 

§  How to protect data from being messed up by concurrent 
apps? 

§  How to ensure that the results will not disappear upon a 
failure? 

These questions have been bothering people since the first days of using shared data  

Shared data = database 

Concurrent users 
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Example: Protect atomicity with the undo log 

§  If there is a failure inside an atomic unit of work, the partial results 
are removed, and the original values restored by using before 
images stored in the undo log. 

A  B  

5 5 

PROGRAM 

A=A-1 

B=B+1 

BEG 

END 

Correctness rule: 
SUM(A,B) = constant 

4 

6 

SUM(A,B) = 10 

SUM(A,B) = 10 

Undo log 

FAILURE  
SUM(A,B) = 9 

A:5 

B:5 

"Before" values 

Replace 
A=5 

Atomic 
unit  
of work 
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Example: Protect against update anomalies 
with locks 

§  Locks were invented in first data management systems in the 60's 

A  

4 

A=A-1 
Read 5 

Write 4 

5 

Get lock 

Release lock 

Locked 

Program 1 Program 2 

Get lock 

Wait 

Lock OK 

Anatomy of a lock 

state 

free/taken 

Queue 

Lock object 
controlled by a critical 

section of a lock manager 

Get lock 

Wait 
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Protect committed data with redo log 

§  If there is a failure immediately after the end of an atomic unit of 
work, there is no guarantee that the new state has been propagated 
to the disk. 

§  The latest state is however stored in the redo log and it can be 
"rerun". 

A  B  

5 5 

PROGRAM 

A=A-1 

B=B+1 

BEG 

END 

Correctness rule: 
SUM(A,B) = constant 

4 

6 

SUM(A,B) = 10 

SUM(A,B) = 10 

Redo log 

FAILURE  
SUM(A,B) = 9 

A:4 

B:6 

"After" values 
Atomic 
unit  
of work 

"Rerun" 
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The full package: an ACID transaction 
Transaction (unit of work): a sequence of operations, 
having the following properties(ACID): 

§  Atomicity 
 Either all or none 

§  Consistency 
The effect of a transaction is a consistent database 
state (in the presence of constraints) 

§  Isolation 
 The changes are not seen before they are committed 

§  Durability 
 The effects are immediately permanent 

Time"
Transaction!

BEGIN!
TRANSACTION!

COMMIT!

Database!

A system maintaining ACID properties produces serializable and recoverable  
transaction schedules.  
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Understanding isolation 
The goal is serializability 

T1 

T3 

T2 

T4 

T5 

T6 

T1 T3 T2 T4 T5 T6 

If this is a serializable 
schedule … 

t 

… it is equivalent to 
this (a serial schedule) 
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No isolation: the lost update anomaly 
A  

5 T1 

T2 
Read 5 

Write 6 
6 

7 

X= X+1 X= X+2 
Lost update 

What is wrong? 
Tell me the equivalent serial order 
of T1 and T2. 

Read 5 

COMMIT 

COMMIT 
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Isolation with locking: exclusive (X) locks 
A  

5 T1 

T2 

Read 7 

Write 8 
8 

7 

X= X+1 

X= X+2 

OK! The equivalent 
order is  
[T1, T2] 

Read 5 

Get X lock 

COMMIT 

COMMIT 

Get X lock X Wait 

X lock OK Release X lock 

Release X lock 

Write 7 

Isolation levels 
READ COMMITTED 
REPEATABLE READS 
SERIALIZABLE 
with 
SELECT … FOR UPDATE 
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Isolation with locking: long shared (S) locks 
A  

5 T1 

T2 

X= X+1 
X= X+2 

Deadlock 

OK! A non-serializable 
schedule is blocked. 
 
The deadlock is 
resolved by killing one 
of the transactions. 

Read 5 

Get S lock 

Get S lock 

X 
Wait 

Promote to X lock 

Promote to X lock X Wait 

Isolation levels 
REPEATABLE READ 
SERIALIZABLE 

We can only hope 
deadlocks will not 
appear 

Read 5 
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Isolation with locking: long shared (S) locks 
(no deadlock) A  

5 T1 

T2 

X= X+1 
X= X+2 

OK! The equivalent 
schedule is [T1, T2] 

Read 5 

Get S lock 

Get S lock 

X 
Wait 

Get X lock 

Promote to X lock 

Isolation levels 
REPEATABLE READ 
SERIALIZABLE 

Read 3 

B  

3 

7 
Release X lock 

Write 7 
X lock OK 

Write 8 
4 

COMMIT 
Release X lock 

COMMIT Release S lock 



Who needs transactions any more? 

12 Antoni Wolski 2013 

Isolation with locking: short shared (S) 
locks A  

5 T1 

T2 

Read 5 

Write 6 
6 

7 

X= X+1 

X= X+2 
Lost update 

The is no equivalent 
schedule of T1 and T2 

Read 5 

COMMIT 

COMMIT 

Get S lock 

Release lock 
Get S lock 

Release S lock 

Get X lock 

Release X lock 

Write 7 

Get X lock 

Release lock 

Isolation level 
READ COMMITTED 

BEWARE! 
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Isolation conclusions 
§  Beware of READ COMMITTED 

•  good for systems with single writers 

•  can you tolerate lost updates? 

•  If not, use SELECT … FOR UPDATE, or UPDATE in place. 

§  If you can contain the deficiencies, READ COMMITTED is an 
efficient isolation level (the locks for the read-only items are short) 

§  READ COMMITTED with SELECT FOR UPDATE can produce 
serializable schedules if you read data items only once. 

§  REPEATABLE READ can produce serializable schedules if you 
ignore phantoms. 

§  SNAPSHOT isolation (if available) will prevent lost updates 

§  SERIALIZABLE isolation is conceptually best but heavy in operation 
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Isolation level scandal in U.K. in 1994 

§  In 1994, IT Week reported on a major clash between a British bank 
and a DBMS vendor (IBM). 

§  Because of the processing errors, the bank lost some of the asset 
transactions of its clients. 

§  The bank blame the vendor for an error in DBMS that "lost" the data. 

§  Later, it turned out the the bank used the CURSOR STABILITY 
isolation level (now: READ COMMITTED) without proper protection 
against lost updates. 
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Why everybody wants to escape the ACID 
straitjacket? 

Source: M. Stonebraker, 2013 

X 

X 
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Is atomicity really needed? 

§  Atomicity is maintained with an undo log 

§  There is an overhead involved 

§  With atomicity, transactions last long, the locks stay longer è the 
concurrency is lower 

Question: 

§  Can you replace multi-statement atomic transactions with single-
statement transactions? 
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Decomposing transactions to smaller ones 

§  Set the commit mode to AUTOCOMMIT 
§  For each of the statements, design a compensating statement, e.g. 

if it is INSERT, specify a corresponding DELETE. 
§  Execute your supertransactions this way: 

•  In the first subtransaction(s), read all the data needed by the 
supertransaction (a read set), and store it for verification 

•  In each next subtransaction, first check whether the input data is the 
same. If it is, execute the subtransaction, otherwise exit the 
supertransaction program block. 

•  If everything is OK up to the last subtransaction, you are done. 
§  If there is a read set error or other subtransaction failure 

•  For each successfully executed subtransaction, execute the 
compensating transaction. 

How to replace multi-statement atomic transactions with a set of 
single-statement transactions (without losing atomicity)?  
 
Supertransaction is a sequence of subtransactions. 
 

Replace the undo log 
with compensating 
transactions 

Problem: supertransactions are not serializable 
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Is durability really needed? 
What is the value of a data item? 

Source: M. Stonebraker, 2013 

Traditional 
OLTP DBMS 
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Strict and relaxed durability 

Commit 

OK 

Log DB 

Database server 
Transaction 

Logger 
Commit 

OK 

Log DB 

Database server 
Transaction 

Logger 

Strict durability 
Synchronous logging  
(write-ahead log, WAL) 

Relaxed durability 
Asynchronous logging  

Response 
time 

This is often used because of the 
response time benefit 

Required for full ACID 
transactional behavior 
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Impact of asynchrony of log writing  
on performance 

 The effect of relaxed durability level (asynchronous logging) on transaction 
throughput in standalone server. 
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When relaxed durability is OK? 

§  The quantified cost of of losing a few transactions is 
acceptable: 

•  Example: Losing a few hundred billing records in a mobile 
network is OK (cost ca. few hundred euros) 

§  Results of single transactions have no value at all 
•  In analytical processing the results are based on aggregates (AVG, SUM, 

MAX, MIN, statistical indicators, etc.) 

§  Can you do without a redo log? 
•  How to restart? From checkpoint? Is that enough? 

•  Some databases caontain only secondary data – can be recreated 
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Generally, how the data is used? 

Traditional 
OLTP DBMS 

Real-time 
Analytics 

Off-line  
OLAP 

(On-line Analytical Propcessing 

System size 

Growth 
potential 
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Big data 
§  What: data sets too large to be managed efficiently by DBMS 
§  Where: management of internet data (Google, Facebook), 

massive retail (Amazon), industrial measurement systems, 
meteorology, geology, satellite imaging, remote sensing, 
business intelligence, data warehousing, decision support 
systems. 

§  Nature of data: heterogeneous, semi-structured 
§  Nature of metadata: evolving schema 
§  Data set sizes: terabytes (1012), petabytes (1015), exabytes 

(1018) and zettabytes (1021) 
§  Needs: fast access, scalability, high availability, eventual 

consistency 
§  Known approaches: key-values stores, MapReduce, 

distributed file systems (all have proprietary APIs – “NoSQL”) 
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Key-value store 

Value can be a BLOB or a complex structure 
 
Key-value store is a two-domain relation 
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Big data: kehitys 
Google 

Amazon 
Facebook 

AWS (Amazon Web Services) 

Amazon DynamoDB (2011) 
(Amazon SimpleDB (2007)) 

(phased out) 

MapReduce 

BigTable, GFS 

Apache (ASF)  

Hadoop (HDFS) 

HBase 

Cassandra 
Dynamo 
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Network 

A massive shared data system 
§  Loosely connected servers 
§  No synchronous protocols are possible (because of time constraints and 

performance 
§  Components (nodes) can fail, and the system can grow online 
§  Often implemented in clouds 
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CAP theorem 
§  CAP: three objectives: Consistency, Availability, Partitioning  

(P = resiliency to network partitioning) 

§  Theorem: 
Of the three objectives (C, A, P) only two can be met, at any single 
time, in a shared-data system. 

§  From ACID to BASE 
ACID: Atomicity, Consistency, Isolation, Durability is too restrictive 
The solution for big data is BASE: 
─ Basically available 
─ Soft-state  ç = the current state in not consistent 
─ Eventual consistency 

(Eric Brewer, 2000)  
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Example: Amazon Dynamo  
(Consistent Hashing with Replication) 

Coordinator of 
range (A,B) 

•  Each key value has a coordinator node 
•  Coordinator node creates and manages replicas (here 3) 
•  A put() operation applies to a single node only 
•  All replicas can be updated: version based reconciliation (eventual 

consistency) 
•  Conflicts in branched versions initiate special processing (depending on the 

semantics of the data) 
•  Some operations are durable: synchronous replication to at least one node. 

Highly-available key-
value store: the 
nodes can leave and 
join. 
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 New challenge: real-time analytics database 

Data 
acquistion 
transactions 
 
Events 

Analytical 
queries 

Requirements: 
- throughput 
- limited atomicity (small transactions) 
- isolation 
- relaxed durability 

Requirements: 
- Throughput 
- Result consistency 

RTADB 
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RTADB can be solved – example: HyPer 

Transactions
Events Queries 

ACID capabilities  
(relaxed) In-memory database 

- snapshot state 
- no transaction processing 
  needed fork() 

Main server process 
Child server process 
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Summary 
 
— transaction concepts are the cornerstone of data processing 
 
— you can relax the ACID capabilities when you understand them 
 
— future data uses will incorporate both transactional 
    and non-transactional processing 
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