
Antoni Wolski

Antoni Wolski, Ph.D.
AWO Consulting

a.wolski@acm.org!

Database Transactions Summit 2013
Haaga-Helia, Helsinki
2013-09-04

Who needs transactions any more?

2 Antoni Wolski 2013

Transactions existed before they were invented

§  What to do when you fail in the middle of doing something?

§  How to ensure that the result is correct?

§  How to protect data from being messed up by concurrent
apps?

§  How to ensure that the results will not disappear upon a
failure?

These questions have been bothering people since the first days of using shared data

Shared data = database

Concurrent users

Who needs transactions any more?

3 Antoni Wolski 2013

Example: Protect atomicity with the undo log

§  If there is a failure inside an atomic unit of work, the partial results
are removed, and the original values restored by using before
images stored in the undo log.

A B

5 5

PROGRAM

A=A-1

B=B+1

BEG

END

Correctness rule:
SUM(A,B) = constant

4

6

SUM(A,B) = 10

SUM(A,B) = 10

Undo log

FAILURE
SUM(A,B) = 9

A:5

B:5

"Before" values

Replace
A=5

Atomic
unit
of work

Who needs transactions any more?

4 Antoni Wolski 2013

Example: Protect against update anomalies
with locks

§  Locks were invented in first data management systems in the 60's

A

4

A=A-1
Read 5

Write 4

5

Get lock

Release lock

Locked

Program 1 Program 2

Get lock

Wait

Lock OK

Anatomy of a lock

state

free/taken

Queue

Lock object
controlled by a critical

section of a lock manager

Get lock

Wait

Who needs transactions any more?

5 Antoni Wolski 2013

Protect committed data with redo log

§  If there is a failure immediately after the end of an atomic unit of
work, there is no guarantee that the new state has been propagated
to the disk.

§  The latest state is however stored in the redo log and it can be
"rerun".

A B

5 5

PROGRAM

A=A-1

B=B+1

BEG

END

Correctness rule:
SUM(A,B) = constant

4

6

SUM(A,B) = 10

SUM(A,B) = 10

Redo log

FAILURE
SUM(A,B) = 9

A:4

B:6

"After" values
Atomic
unit
of work

"Rerun"

Who needs transactions any more?

6 Antoni Wolski 2013

The full package: an ACID transaction
Transaction (unit of work): a sequence of operations,
having the following properties(ACID):

§  Atomicity
 Either all or none

§  Consistency
The effect of a transaction is a consistent database
state (in the presence of constraints)

§  Isolation
 The changes are not seen before they are committed

§  Durability
 The effects are immediately permanent

Time"
Transaction!

BEGIN!
TRANSACTION!

COMMIT!

Database!

A system maintaining ACID properties produces serializable and recoverable
transaction schedules.

Who needs transactions any more?

7 Antoni Wolski 2013

Understanding isolation
The goal is serializability

T1

T3

T2

T4

T5

T6

T1 T3 T2 T4 T5 T6

If this is a serializable
schedule …

t

… it is equivalent to
this (a serial schedule)

Who needs transactions any more?

8 Antoni Wolski 2013

No isolation: the lost update anomaly
A

5 T1

T2
Read 5

Write 6
6

7

X= X+1 X= X+2
Lost update

What is wrong?
Tell me the equivalent serial order
of T1 and T2.

Read 5

COMMIT

COMMIT

Who needs transactions any more?

9 Antoni Wolski 2013

Isolation with locking: exclusive (X) locks
A

5 T1

T2

Read 7

Write 8
8

7

X= X+1

X= X+2

OK! The equivalent
order is
[T1, T2]

Read 5

Get X lock

COMMIT

COMMIT

Get X lock X Wait

X lock OK Release X lock

Release X lock

Write 7

Isolation levels
READ COMMITTED
REPEATABLE READS
SERIALIZABLE
with
SELECT … FOR UPDATE

Who needs transactions any more?

10 Antoni Wolski 2013

Isolation with locking: long shared (S) locks
A

5 T1

T2

X= X+1
X= X+2

Deadlock

OK! A non-serializable
schedule is blocked.

The deadlock is
resolved by killing one
of the transactions.

Read 5

Get S lock

Get S lock

X
Wait

Promote to X lock

Promote to X lock X Wait

Isolation levels
REPEATABLE READ
SERIALIZABLE

We can only hope
deadlocks will not
appear

Read 5

Who needs transactions any more?

11 Antoni Wolski 2013

Isolation with locking: long shared (S) locks
(no deadlock) A

5 T1

T2

X= X+1
X= X+2

OK! The equivalent
schedule is [T1, T2]

Read 5

Get S lock

Get S lock

X
Wait

Get X lock

Promote to X lock

Isolation levels
REPEATABLE READ
SERIALIZABLE

Read 3

B

3

7
Release X lock

Write 7
X lock OK

Write 8
4

COMMIT
Release X lock

COMMIT Release S lock

Who needs transactions any more?

12 Antoni Wolski 2013

Isolation with locking: short shared (S)
locks A

5 T1

T2

Read 5

Write 6
6

7

X= X+1

X= X+2
Lost update

The is no equivalent
schedule of T1 and T2

Read 5

COMMIT

COMMIT

Get S lock

Release lock
Get S lock

Release S lock

Get X lock

Release X lock

Write 7

Get X lock

Release lock

Isolation level
READ COMMITTED

BEWARE!

Who needs transactions any more?

13 Antoni Wolski 2013

Isolation conclusions
§  Beware of READ COMMITTED

•  good for systems with single writers

•  can you tolerate lost updates?

•  If not, use SELECT … FOR UPDATE, or UPDATE in place.

§  If you can contain the deficiencies, READ COMMITTED is an
efficient isolation level (the locks for the read-only items are short)

§  READ COMMITTED with SELECT FOR UPDATE can produce
serializable schedules if you read data items only once.

§  REPEATABLE READ can produce serializable schedules if you
ignore phantoms.

§  SNAPSHOT isolation (if available) will prevent lost updates

§  SERIALIZABLE isolation is conceptually best but heavy in operation

Who needs transactions any more?

14 Antoni Wolski 2013

Isolation level scandal in U.K. in 1994

§  In 1994, IT Week reported on a major clash between a British bank
and a DBMS vendor (IBM).

§  Because of the processing errors, the bank lost some of the asset
transactions of its clients.

§  The bank blame the vendor for an error in DBMS that "lost" the data.

§  Later, it turned out the the bank used the CURSOR STABILITY
isolation level (now: READ COMMITTED) without proper protection
against lost updates.

Who needs transactions any more?

15 Antoni Wolski 2013

Why everybody wants to escape the ACID
straitjacket?

Source: M. Stonebraker, 2013

X

X

Who needs transactions any more?

16 Antoni Wolski 2013

Is atomicity really needed?

§  Atomicity is maintained with an undo log

§  There is an overhead involved

§  With atomicity, transactions last long, the locks stay longer è the
concurrency is lower

Question:

§  Can you replace multi-statement atomic transactions with single-
statement transactions?

Who needs transactions any more?

17 Antoni Wolski 2013

Decomposing transactions to smaller ones

§  Set the commit mode to AUTOCOMMIT
§  For each of the statements, design a compensating statement, e.g.

if it is INSERT, specify a corresponding DELETE.
§  Execute your supertransactions this way:

•  In the first subtransaction(s), read all the data needed by the
supertransaction (a read set), and store it for verification

•  In each next subtransaction, first check whether the input data is the
same. If it is, execute the subtransaction, otherwise exit the
supertransaction program block.

•  If everything is OK up to the last subtransaction, you are done.
§  If there is a read set error or other subtransaction failure

•  For each successfully executed subtransaction, execute the
compensating transaction.

How to replace multi-statement atomic transactions with a set of
single-statement transactions (without losing atomicity)?

Supertransaction is a sequence of subtransactions.

Replace the undo log
with compensating
transactions

Problem: supertransactions are not serializable

Who needs transactions any more?

18 Antoni Wolski 2013

Is durability really needed?
What is the value of a data item?

Source: M. Stonebraker, 2013

Traditional
OLTP DBMS

Who needs transactions any more?

19 Antoni Wolski 2013

Strict and relaxed durability

Commit

OK

Log DB

Database server
Transaction

Logger
Commit

OK

Log DB

Database server
Transaction

Logger

Strict durability
Synchronous logging
(write-ahead log, WAL)

Relaxed durability
Asynchronous logging

Response
time

This is often used because of the
response time benefit

Required for full ACID
transactional behavior

Who needs transactions any more?

20 Antoni Wolski 2013

Impact of asynchrony of log writing
on performance

 The effect of relaxed durability level (asynchronous logging) on transaction
throughput in standalone server.

S tric t R elaxed
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

711

1005

2034

2458

R 20/W80

R 80/W20

Durability	 level

Tr
an

sa
ct
io
ns

	 p
er
	 s
ec

on
d

 Risking transaction loss allows to increase
 throughput 20-40%.

Read/write ratio

Who needs transactions any more?

21 Antoni Wolski 2013

When relaxed durability is OK?

§  The quantified cost of of losing a few transactions is
acceptable:

•  Example: Losing a few hundred billing records in a mobile
network is OK (cost ca. few hundred euros)

§  Results of single transactions have no value at all
•  In analytical processing the results are based on aggregates (AVG, SUM,

MAX, MIN, statistical indicators, etc.)

§  Can you do without a redo log?
•  How to restart? From checkpoint? Is that enough?

•  Some databases caontain only secondary data – can be recreated

Who needs transactions any more?

22 Antoni Wolski 2013

Generally, how the data is used?

Traditional
OLTP DBMS

Real-time
Analytics

Off-line
OLAP

(On-line Analytical Propcessing

System size

Growth
potential

Who needs transactions any more?

23 Antoni Wolski 2013

Big data
§  What: data sets too large to be managed efficiently by DBMS
§  Where: management of internet data (Google, Facebook),

massive retail (Amazon), industrial measurement systems,
meteorology, geology, satellite imaging, remote sensing,
business intelligence, data warehousing, decision support
systems.

§  Nature of data: heterogeneous, semi-structured
§  Nature of metadata: evolving schema
§  Data set sizes: terabytes (1012), petabytes (1015), exabytes

(1018) and zettabytes (1021)
§  Needs: fast access, scalability, high availability, eventual

consistency
§  Known approaches: key-values stores, MapReduce,

distributed file systems (all have proprietary APIs – “NoSQL”)

Who needs transactions any more?

24 Antoni Wolski 2013

Key-value store

Value can be a BLOB or a complex structure

Key-value store is a two-domain relation

Who needs transactions any more?

25 Antoni Wolski 2013

Big data: kehitys
Google

Amazon
Facebook

AWS (Amazon Web Services)

Amazon DynamoDB (2011)
(Amazon SimpleDB (2007))

(phased out)

MapReduce

BigTable, GFS

Apache (ASF)

Hadoop (HDFS)

HBase

Cassandra
Dynamo

Who needs transactions any more?

26 Antoni Wolski 2013

Network

A massive shared data system
§  Loosely connected servers
§  No synchronous protocols are possible (because of time constraints and

performance
§  Components (nodes) can fail, and the system can grow online
§  Often implemented in clouds

Who needs transactions any more?

27 Antoni Wolski 2013

CAP theorem
§  CAP: three objectives: Consistency, Availability, Partitioning

(P = resiliency to network partitioning)

§  Theorem:
Of the three objectives (C, A, P) only two can be met, at any single
time, in a shared-data system.

§  From ACID to BASE
ACID: Atomicity, Consistency, Isolation, Durability is too restrictive
The solution for big data is BASE:
─ Basically available
─ Soft-state ç = the current state in not consistent
─ Eventual consistency

(Eric Brewer, 2000)

Who needs transactions any more?

28 Antoni Wolski 2013

Example: Amazon Dynamo
(Consistent Hashing with Replication)

Coordinator of
range (A,B)

•  Each key value has a coordinator node
•  Coordinator node creates and manages replicas (here 3)
•  A put() operation applies to a single node only
•  All replicas can be updated: version based reconciliation (eventual

consistency)
•  Conflicts in branched versions initiate special processing (depending on the

semantics of the data)
•  Some operations are durable: synchronous replication to at least one node.

Highly-available key-
value store: the
nodes can leave and
join.

Who needs transactions any more?

29 Antoni Wolski 2013

 New challenge: real-time analytics database

Data
acquistion
transactions

Events

Analytical
queries

Requirements:
- throughput
- limited atomicity (small transactions)
- isolation
- relaxed durability

Requirements:
- Throughput
- Result consistency

RTADB

Who needs transactions any more?

30 Antoni Wolski 2013

RTADB can be solved – example: HyPer

Transactions
Events Queries

ACID capabilities
(relaxed) In-memory database

- snapshot state
- no transaction processing
 needed fork()

Main server process
Child server process

Antoni Wolski

Summary

— transaction concepts are the cornerstone of data processing

— you can relax the ACID capabilities when you understand them

— future data uses will incorporate both transactional
 and non-transactional processing

Who needs transactions any more?

32 Antoni Wolski 2013

32

Bibliography
[BHG87] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman. Concurrency control and recovery in

database systems. Addison-Wesley Publishing Company, 1987.

[Ber95] Hal Berenson et al. A Critique of ANSI SQL Isolation Level. Proc. ACM SIGMOD 95, pp.
1-10, San Jose CA, June 1995.

[Bre00] Eric Brewer. Towards Robust Distributed Systems (kyenote talk). Proc. PODC 2000 (ACM
Symposium on Pronciple of Distributed Computing).
http://awoc.wolski.fi/dlib/big-data/Brewer_podc_keynote_2000.pdf

[GiLy02] Seth Gilbert, Nancy Lynch: Brewer's Conjecture and the Feasibility of Consistent Available
Partition-Tolerant Web Services, ACM SIGACT News, 2002.
http://awoc.wolski.fi/dlib/big-data/GiLy02-CAP.pdf

[GR92] Jim Gray and Adreas Reuter. Transaction Processing Systems, Concepts and Techniques.
Morgan Kaufmann Publishers, 1992.

[Pri08] Dan Pritchet: BASE: An ACID Alternative. ACM Queue, May/June 2008.
http://awoc.wolski.fi/dlib/big-data/Pritchett08-baseACID-acmqueue.pdf

[Strauch11] Strauch, C., Sites, U. L. S., & Kriha, W.: NoSQL databases. Lecture Notes, Stuttgart
Media University, 2011.
http://awoc.wolski.fi/dlib/big-data/strauch11-nosqldbs.pdf

