DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

JSON on RDBMS Databases

Martti Laiho

Standalone collection of Appendices for the tutorial “JSON_on RDBMS Databases”
DBTechMet.
SCNINEL-OT8 The latest version of this pdf is available by link JSON Data Maintenance

Contents

Appendix 1. JSON Data MainteNaANCEuuuiiiiieeeeeeiiiiiiiiee e e e e e e eeessctrrr e et e e e e e e e s e seanaasaeaeeaeaaeeesssssssnssssnneeeaaeeaaaaans 2
JSON Data Structure, Types and TermMiNOIOZYccouiurtriiiiiiiieiiiieeeeeeiitee et e e et e e s sire e e e e sbbreeessnneeeeeeanes 2
“CRUD” operations t0 the JSON STrUCTUIES.........cciiuuiiiiiiieeee e e e e e e ettt e e e e e e e e e et ar e e e e e e e e e e e eeeaassaaseaeaeaas 3
JSON manipulation experiments using SQL/JSON of DB2 fOor LUWccvieeiiiieiee ettt 5
SEtting UP the @XPEriMENT.......eiiiieiieee et e e et e e s s bttt e s e abt e e s sannaeeessnbeeeeeas 5
ACCESSING JSON ODJECES ..ottt e e e et a e e e e e e e e e e e ee e abaaaaeaaaaaaaaeeseaassssasasaaaaaaaaaaaans 6
ACCESSING JSON @I AYS .uuuiieeiieee i i et et ettt s seasseeeeeeeeeeeeteeeeeea et aestaessaas s aasseeseaaeaeeeeeeseeennssssssnnsnnn 9
SUMMIMIAIY ettt ettt ettt e e e e s bbb ettt e e e e e e s e e bbb s e e e et e e e e e e e s s e a b e et e e e e eeee e e s e r b raaeeeeeeeeeens 15
JSON manipulation experiments using SQL/JISON Of Oracle 23a0cceiiveeeiiiiiieieeeiiiee e e e eeveee e 15
Setting UP the @XPEIMENT. e e e e e e e e e st e e e e e eaaaeessassansseaaeeeeaaeaaaans 15
ACCESSING JSON ODJEEESeeiieiiiiiee ittt e ettt e e e et e e e s sttt e s e bttt e e saabbeeeeeaabbaeeessnneeeesanns 16
ACCESSING JSON @I AYS cettuuieiiiiiiiieeetttiier et et ttire e et ettt areeeettta e eettataseeeaastaeteeetesaseeeeetsnseseeesessnneseserssnreeen 20
JSON manipulation experiments using T-SQL/JSON Of SQL SEIVETccvveeivveeeireeeereeectreeeeteeeereeeereeeereeeenns 24
Setting UP the EXPeIiMENT.......eiiii et e e st e e e e e s s bt e e e s snbaeeesennes 24
OPENJSON fuNCtion Of T-SQL/ISONeeeitiiiiiiiteitie ittt ettt ettt ettt sbeesbb e et esbeesbeeeabesbeesbaesaneeaee 25
Yol ol Y Y= A @ 1\ o] o = ot 3SR 26
ACCESSING JSON GITAYS .eeeiiiiiiiiiiiiiiit ettt e e et e e e e e e s s s s e e e e e e e e s s e esa s an b s ra e e e e eeeeesssannsrraeeeeeeesseens 29
SUIM MY ettt ettt e ettt e e e ettt ee e e e ettt e e e e e aab e e eeeaaaaseeeaaaba s eeeaas b e eeeaasaa e e e e et baaseeeaetbeeeeeaaraneeeeetanneaaaes 32
JSON manipulation experiments using pSQL/JSON 0f POSEEIreSQLcccveeeiieeeeirie ettt et et 32
Setting UP the EXPEIrIMENT.......cooii et r e e e e e eeeeaaaaeeeseeseeasssessannennnannn 32
Accessing JSON objects on top level in the path eXpression ... 34
ACCESSING JSON @ITAYS ..iiiiiiiiiiiiiiiiiiitiiiiiieea s se e s e e e eeeeeeeeeteeetteretaaabaas s aaassaasseeeeeeseeeseeessssssssnsssnnnnsnssnssseeses 40
JSON manipulation experiments using SQL/JSON of MySQL/MariaDB..........cccceercierieenieenienieeieesee e 47
Comparing JSON implementations of MySQL and MariaDBi.............cooiiiiiiiiiiiieeee et e e e e e 47
Setting UP the @XPEIMENT. e e e e e e e s s st r e e e eeaeeeessssnnrteaneenaeaaeaaans 49
o] g Tl (U] YT o F=q 4 VoL [= £ USSP 49
ACCESSING JSON ODJECES .ottt e e e e e e et e e e e e e e e e s s s naaaaaaaeeeaaaeeeesasanssssraeeaaaaaaaaans 51
ACCESSING JSON @ITAYS ..o iiiiiiiiiiiiiiiiiiiiiiii i rrera s s e e e e e e eeeeeeeeetteetaeetasasbaaaaa s aaasseaesseeeeeseeeeeeessssssssnsssnnnnsnsanssseeses 54
UM MY ettt ettt ettt e e et et e e e e e tet e e e e e e atba e e e e e e tau e eeeettaa s aeeaasbaaseeeaasaa e eeaatsannsaeenetsnneeeeeaataaeeererannraaans 58
On UNIQUE KEYS requirement of JSON MEMDEIS........uuiiiiiieeeeiiiiiiiiiiieeeee e e e e eeeeettnraee e e e e e e e e e s sinaaraeeeeaaaeeeeas 58
DB2 O LUW: ettt ettt et ettt et e et e s st e s e e sane e s smn e e s naeesaneeesareeesnreesnreesanneenan 59

Page 1

https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1dku2FG2dcXz-_WiU9MErcSzvRTyCcqMB/view?usp=drive_link

R O =T o =T i =S PP 60
0Ty = /Y © 1 USSR 61
IMI@FIADIB ...ttt e e e e e e e e et e et e e e e e e e e et ettt e e e e e s e aaneees 62
Summary — A Critique Of SQL/ISON ...oiieiieiiee et e e e e e e e s e e sae e e ssseeeneeesneeesnseessnseeeneens 63
Yol 4 a Yo NV LT =T o o 1T o PR 64
RETEIENCES ...ttt e e sttt e e e bt e e s aabb et e e e bbb e e e s e abbe e e e eaabbbeeesennaeeeeaanraeeens 64

[0 To =) O T PP PSP U PP PR PPPOTOPPPROPPO 66
Appendix 2 Counting number of object members 0N tOP IEVEI?.........viiiiiiiii e 67
D2 FOr LUW .ottt ettt e et e e s e bttt e e aab bt e e e s s bttt e e eaab bt e e e e sabbeeeeeaanbneeessanneeaesanns 67
(O] Tol [N A - F OO TP TP O PSP PTOPPPTRPRPOP 67

R3] O S =T T P 67

Lo = | O U UPTPPN 67
Y= T =10 PP 68
Appendix 3 Implementing JSON_KEYS function to Db2 for LUW?.........uiiiiiiiiiiiiciiiireeeee e ee e e e 68
Implementing JSON_KEYS as external routine written in Clanguage..........cooorrrriiiiiiiiiiiccccccceee e, 68
RETEIENCES ...ttt ettt e se et e s et e sttt e bt e s bt e e st e e sa b e e e sab e e s bt e e s beeesabeeenabeeenreesabneenan 74

Appendix 1. JSON Data Maintenance

In Search for the JSON Update Patterns

JSON Data Structure, Types and Terminology

JSON, JavaScript Object Notation, based on JavaScript, defines language-independent simple textual data
structures, adaptable in most modern programming languages and SQL dialects. The terminology of JSON
datatypes used on documentations and articles of various SQL/JSON dialects varies, but we try use the follow-
ing terminology.

The JSON data types applied in SQL/JSON are following:

Primitive (scalar) value types:

Number: an integer, decimal, or floating-point number in textual format

String: a sequence of zero or more Unicode characters, the sequence enclosed in double quotes
(except the escaped characters, see the RFC 8259)

Boolean: the value presented either by literal true or false
null: empty value presented by the literal null
Structured types (nestable):

Array: ordered list of zero or more JSON elements (ISO OBP: tokens) of any JSON data type, the list enclosed in
square brackets. An element can be unnamed scalar or nestable value, for example
[a,b,c]or[1,a,1,{b:bb}, {c:cc}], without unique requirement, i.e. same value can appear multiple times as

Page 2

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

element in the array. Standalone name/value pairs are not allowed, but can appear enclosed in curly braces,
i.e. as object members.

JSON object: consists of comma separated unordered list of zero or more members (a.k.a. fields* in SQL/JSON
or properties), the list enclosed in curly braces, for example an empty object as {}. The members are
name/value pairs (a.k.a. key/value pairs) in format “name”:"value”, where the <name> (a.k.a. key) is a string
enclosed in double quotes, and the <value> is any of JSON data types, an atomic type, an array, or an object.
This recursive definition allows hierarchically structured JSON objects similar to XML documents. The names of
members SHOULD be defined unique? within the object, using WITH UNIQUE KEYS clause (Petkovic 2017).

However, the same name can appear for members on different nesting levels without problems.

Some implementations, such as Oracle SQL/JSON, don’t require keys to be enclosed in double quotes.
Numeric values, literals, as well as array and object values are not quoted.

JSON document: in SQL/JSON a JSON document in SQL statements is a JSON object enclosed in single quotes
as SQL string as follows: ‘{ <list of members> Y}

Note: all keys and the JSON literals in SQL/JSON are case-sensitive.

“CRUD” operations to the JSON structures

The ISO SQL/JSON standard is focused on JSON Query Language, leaving the UPDATE/DELETE part to be solved
by SQL implementations in RDBMS systems.

In RDBMS (SQL) databases JSON data is stored as a JSON document per column of JSON type (native or imple-
mentation dependent SQL type) in SQL tables. An entire JSON document is stored as part of SQL INSERT oper-
ation or can be replaced as a whole as part of SQL UPDATE of a JSON column.

The question of uniqueness of JSON object member names is a bit confusing, since in case of duplicate names
either the first or the last one will be the acting member depending on the implementation. We will discuss
this topic in a later chapter, experimenting on how our selected RDBMS products behave in this respect. Both
Oracle and Db2 LUW require the member names in an object to be unique. In the following we restrict to use
cases where the object member names are unique.

For the CRUD operations we propose following set of maintenance use cases reasoned from the technical
JSON data structure we discussed above.

The term “field” has been used, for example, in SQL Server, MySQL, PostgreSQL articles/documentation.

2 According to IETF JSON specification RFC 8259 Dec 2017 “The names within an object SHOULD be unique”..

“When the names within an object are not unique, the behavior of software that receives such an object is
unpredictable.” Considering this the WITHOUT UNIQUE KEYS of SQL/JSON proposal and in some implemen-

tations is just a “casting defict” and should be removed. We will debate on this in the last chapter below.

Page 3

https://archive.org/details/rfc8259

Basic use case operations on part of JSON objects include following:

Case 1: Inserting a new member
Case 2.1: Updating value of an existing member found by key

Case 2.2: Updating value of ALL existing members found by given value
since the JSON data model does not require values of members to be unique

Case 3.1: Deleting an existing member found by key

Case 3.2: Deleting ALL existing members found by given value
since the JSON data model does not require values of members to be unique

and use case operations on part of JSON arrays

Case 4: Inserting a new element
Case 5.1: Updating value of an existing element found by position

Case 5.2: Updating the value of ALL existing elements found by given value
since the JSON data model does not require values of elements in an array to be unique

Case 6.1: Deleting an existing element found by position

Case 6.2: Deleting ALL existing elements found by given value
since the JSON data model does not require values of elements in an array to be unique

The paper “Implementation of JSON Update Framework in RDBMSs" (Petkovic, Feb 2020) presents almost
similar list of UPDATE primitives, except that inserts of array elements before or after an existing element are
considered as different cases, commenting that these are optional “because there is no ordering of objects
[elements], generally”.

The “found by given value” operations may not be typical operations on JSON data in practice, but considering
the JSON data model, as we have described above, possible operations at least in theory. The designers of the
ANSI SQL/JSON proposal seem to have overlooked the possible need to query all name-value pairs or name of
the member containing the given value. The “ALL operations” on JSON object or array which doesn’t contain
duplicate values are just single JSON operations, but in operations on duplicate values may need procedural
logic or use of programming languages.

Now, after presenting these JSON maintenance use cases, we continue the search for maintenance patterns,
the working solutions for these use cases, based on SQL/JSON implementations in the systems we have stud-
ied.

Beside the top level of JSON document, the access patterns which we have discussed above can be applied
also on accessing nested objects and arrays by proper path expressions.

Instead of the typical “Joe and his friends” examples in JSON literature, for our test cases we use following
minimalistic documents, based just on technical JSON data structure and data types, one without duplicate
values

"{"meml":123, "mem2":"123", "mem3":true, "mem4":null, "mem5":[123, "123", true, null, [1, 2],
{y 1, "mem6": { "m6l":1, "me6e2":"123", "m63": true, "m64": null, "m6e5":[2, 3], "m66":{} } }'

and one with duplicate values of members, and duplicate array elements

'"{"meml": 123, "mem2": "123", "mem3": true, "mem4": null, "mem5":[123, "123", "string", true,
123, 124, 124, null, [1, 21, {}, 123 1, "mem6": { "m61":1, "m62":"123", "m63": true, "mo64":
null, "m65":[2, 3], "m66":{} }, "mem7": 123, "mem8": "123" }'

Note: Also array elements could include any nested JSON structures, but according to our tests without key
names. See the unnamed array and object in our example.

Page 4

DBTechlLab

SQL/JSON on RDBMS Databases

draft 2025-12-29 ML, SJH, FL, KS

In the following chapters we will be experimenting with selected RDBMS systems on how to implement the
JSON update use cases defined above. Every experiment will be run in a transaction which is rolled back to

save the original content for next experiments.

JSON manipulation experiments using SQL/JSON of Db2 for LUW

We have discussed on use of Db2 already in the main paper “JSON_on_RDBMS_Databases” and in
following we will be experimenting just on the proposed JSON update patterns above using Db2 12.1.1 on

Windows 11.

Setting up the experiment

CREATE TABLE T1 (
K INT NOT NULL PRIMARY KEY,

J BLOB,
CONSTRAINT Chk UserData CHECK (SYSTOOLS.BSON Validate(J) = 1)
)i
-- inserting/initializing the contents
DELETE FROM T1;
-- basic document without duplicates
INSERT INTO T1 (K, J) VALUES
(1, SYSTOOLS.JSON2BSON ('{
"meml":123,
"mem2":"123",
"mem3":true,
"mem4" :null,
"mem5": [123, "123", true, null, [1, 2], {} 1,
"mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{}
P
-- document with duplicate keys and elements
INSERT INTO T1 (K, J) VALUES
(2, SYSTOOLS.JSONZ2BSON ('{
"meml": 123,
"mem2": "123",
"mem3": true,
"mem4": null,
"mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123 1,
"mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{}
"mem7": 123,
"mem8": "123"

P
COMMIT;

-- verifying the contents of document K = 2

[123,
l, "me2"

"mem8"

"123"’
"123",
n1p3m

}

}l

RETURNING VARCHAR (1000)) AS json FROM Tl WHERE K=2;

"string",

"me3"

db2 => SELECT JSON QUERY (J, 'strict $'
JSON
{ "meml" 123, "mem2" "123", "mem3" true, "mem4d" null, "memb5"
true, 123, 124, 124, null, [1, 2 1, { '}, 123 1, "mem6" : { "m6l"
true, "mo4" null, "m65" [2, 31, "mee" : { } o}, "mem7" 123,
}

1 record(s) selected.

db2 =>

Page 5

https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link

Accessing JSON objects
Case 1: Adding a new member on top level

UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {mem7:"123"}}")
WHERE K = 1;

-- verifying the contents

SELECT K, JSON QUERY (J, '$.mem7' RETURNING CHAR(60)) AS mem?7
FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {mem7:"123"}}")
db2 (cont.) => WHERE K = 1;
Number of rows affected : 1
DB20000I The SQL command completed successfully.
db2 => -- verifying the contents
db2 => SELECT K, JSON_QUERY (J, 'S$.mem7' RETURNING CHAR(60)) AS mem7
db2 (cont.) => FROM Tl WHERE K = 1;
K MEM7
1 ll123ll

1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 2.1: Updating value of an existing member found by key

UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{S$set: {meml: 124}}")

WHERE K = 1;

-- verifying the contents

SELECT K, JSON QUERY (J, 'S.meml' RETURNING CHAR(60)) AS meml
FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1
db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {meml: 124}}")
db2 (cont.) => WHERE K = 1;
Number of rows affected : 1
DB20000I The SQL command completed successfully.

db2 => -- verifying the contents
db2 => SELECT K, JSON QUERY (J, 'S.meml' RETURNING CHAR(60)) AS meml
db2 (cont.) => FROM Tl WHERE K = 1;
K MEM1
1 124

1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 2.2: Updating value of all existing members found by given value

For this pattern we apply cleaned version of the stored procedure solution presented in Appendix 3 as follows:

Page 6

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

--#SET TERMINATOR @
CREATE OR REPLACE PROCEDURE Case2 2
(IN kp INT,
IN given value VARCHAR(100),
IN new_value VARCHAR(100)
)
SPECIFIC Case2 2
LANGUAGE SQL
BEGIN ATOMIC
DECLARE json VARCHAR(1000) ;
DECLARE loop INT default 0;
DECLARE id INT;
DECLARE memName VARCHAR (20) ;
DECLARE oldValue VARCHAR(1000) ;
DECLARE sglcode INT DEFAULT O0;
DECLARE keycurs CURSOR FOR
SELECT t.id, t.key
FROM UNNEST (JSON_KEYS ((SELECT JSON_QUERY (J, '$') FROM T1 WHERE K=kp)))
WITH ORDINALITY AS t(key, id)
FOR FETCH ONLY
WITH UR;
SELECT BSON_TO_ JSON (J) INTO json FROM T1 WHERE K = kp;
OPEN keycurs;
WHILE sglcode = 0 AND loop < 100 DO
SET loop = loop + 1;

FETCH keycurs INTO id, memName; -- Extract the value at the current index
SET memName = REPLACE (memName, '"', '');
SELECT JSON_QUERY(J, '$.' || memName || ' ') INTO oldValue

FROM Tl WHERE K = kp;
IF (oldvalue = given value) THEN

UPDATE T1
SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {' || memName || ': ' || new value || "}} ")
WHERE K = kp;
END IF;
END WHILE;
END;
@

-—#SET TERMINATOR ;

Tested as follows:

db2 => SELECT cast (K as smallint) as k,

db2 (cont.) => JSON QUERY (J, 'strict $' RETURNING varchar (1000)) as result
db2 (cont.) => FROM Tl WHERE K=2;
K RESULT

2 { "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "memb5" : [123, "123",
"string", true, 123, 124, 124, null, [1, 2 1, { }, 123 1, "mem6" : { "m6l"™ : 1, "moe2"
"123", "me3" : true, "mé64" : null, "me65" : [2, 3 1, "m66" : { } }, "mem7" : 123, "mem8"
nip3m }
1 record(s) selected.
db2 => CALL Case2 2 (2, '123', '129'");

Return Status = 0

db2 => SELECT cast (K as smallint) as k,
db2 (cont.) => JSON_QUERY (J, 'strict $' RETURNING varchar (1000)) as result
db2 (cont.) => FROM Tl WHERE K=2;
K RESULT

2 { "meml" : 129, "mem2" : "123", "mem3" : true, "mem4" : null, "memb5" : [123, "123",
"string", true, 123, 124, 124, null, [1, 2 1, { }, 123 1, "mem6" : { "m61"™ : 1, "m62"
"123", "me3" : true, "m64" : null, "m65" : [2, 3], "m66" : { by, "mem7" : 129, "mem8"
nio3n }

1 record(s) selected.
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Page 7

Case 3.1: Deleting an existing member found by key

Db2 SQL/JSON does not include function such as JSON_REMOVE. Only available option for deleting
a JSON object member is to mark it deleted by the literal value “null”, reported as “-“, as follows:

UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {meml: null}}')
WHERE K = 1;

-- verifying the contents

SELECT K, JSON QUERY (J, '$.meml' RETURNING CHAR(60)) AS meml
FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1
db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {meml: null}}")
db2 (cont.) => WHERE K = 1;
Number of rows affected : 1
DB20000I The SQL command completed successfully.
db2 => -- verifying the contents
db2 => SELECT K, JSON _QUERY(J, 'S$.meml' RETURNING CHAR(60)) AS meml
db2 (cont.) => FROM Tl WHERE K = 1;

1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 3.2: Deleting all existing members found by given value

For this pattern we have modified from Case 2.2 the following solution

--#SET TERMINATOR @
CREATE OR REPLACE PROCEDURE Case3 2
(IN kp INT,
IN given value VARCHAR(100)
)
SPECIFIC Case3 2
LANGUAGE SQL
BEGIN ATOMIC
DECLARE json VARCHAR(1000) ;
DECLARE loop INT default 0;
DECLARE id INT;
DECLARE memName VARCHAR(20);
DECLARE oldValue VARCHAR (1000) ;
DECLARE sglcode INT DEFAULT O;
DECLARE keycurs CURSOR FOR
SELECT t.id, t.key
FROM UNNEST (JSON_KEYS ((SELECT JSON_QUERY (J, '$') FROM T1 WHERE K=kp)))
WITH ORDINALITY AS t(key, id)
FOR FETCH ONLY
WITH UR;
SELECT BSON_TO JSON(J) INTO json FROM Tl WHERE K = kp;
OPEN keycurs;
WHILE sglcode = 0 AND loop < 100 DO
SET loop = loop + 1;
FETCH keycurs INTO id, memName; -- Extract the value at the current index
SET memName = REPLACE (memName, '"', '');
SELECT JSON_QUERY (J, '$S.'" || memName || ' ') INTO oldvValue

Page 8

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

FROM T1 WHERE K = kp;
IF (oldvalue = given value) THEN

UPDATE T1
SET J = SYSTOOLS.JSON UPDATE(J, '{$set: {' || memName || ': null }} ')
WHERE K = kp;
END IF;
END WHILE;
END;
@

--#SET TERMINATOR ;

Tested as follows

db2 => SELECT cast (K as smallint) as k,

db2 (cont.) => JSON_QUERY (J, 'strict $' RETURNING varchar (1000)) as result
db2 (cont.) => FROM Tl WHERE K=2;
K RESULT

2 { "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",
"string", true, 123, 124, 124, null, [1, 2], { }, 123 1, "mem6" : { "m61"™ : 1, "m62"
"123", "m63" : true, "m64" : null, "me6e5" : [2, 3], "moo" : { by, "mem7" : 123, "mem8"
"123" }

1 record(s) selected.
db2 => CALL Case3 2 (2, '123'");
Return Status = 0

db2 => SELECT cast (K as smallint) as k,

db2 (cont.) => JSON_QUERY (J, 'strict $' RETURNING varchar (1000)) as result
db2 (cont.) => FROM T1 WHERE K=2;
K RESULT

2 { "meml" : null, "mem2" : "123", "mem3" : true, "mem4" : null, "memb5" : [123, "123",
"string", true, 123, 124, 124, null, [1, 2 1, { '}, 123 1, "mem6" : { "m6l"™ : 1, "mo62"
"123", "m63" : true, "m64" : null, "me5" : [2, 3], "moo" : { } }, "mem7" : null, "mem8"
"13m)

1 record(s) selected.

db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Note: Deleted members are not removed in Db2, but marked as deleted by value “null”. To remove those
members having value “null”, we would need to first copy the json data to string operations in some external

routine, and finally replace the original row column in database by the operated json data.

Accessing JSON arrays

Case 4: Adding a new element into an array

-- using by too big index, the new element is appended in the array
UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {"mem5.100": 127}}")

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY (J, 'S.mem5' RETURNING CHAR(60)) AS memb5

FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1

Page 9

db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {"mem5.100": 127}}")
db2 (cont.) => WHERE K = 1;

Number of rows affected : 1
DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON QUERY(J, 'S$.mem5' RETURNING CHAR(60)) AS memb5
db2 (cont.) => FROM Tl WHERE K = 1;

K MEMS

1 [123, "123", true, null, [1, 2 1, { }, 127]
1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 5.1: Updating value of an existing element found by position

Updating existing element in given position in array value of given member is supported in Db2
SQL/JSON as follows for index 0 of mem5 member:

UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{S$set: {"mem5.0": 124}}")
WHERE K = 1;

-- verifying the contents

SELECT K, JSON QUERY (J, '$.mem5' RETURNING CHAR(60)) AS memb
FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {"mem5.0": 124}}")
db2 (cont.) => WHERE K = 1;
Number of rows affected : 1
DB20000I The SQL command completed successfully.
db2 => -- verifying the contents
db2 => SELECT K, JSON_QUERY (J, '$S.mem5' RETURNING CHAR(60)) AS memb
db2 (cont.) => FROM Tl WHERE K = 1;
K MEMS5

1 [124, "123", true, null, [1, 2 1, { 1} 1
1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 5.2: Updating value of all existing elements found by value

For this pattern we have built following stored procedure which first checks number of elements and then
browses the array of elements one at a time and updates those having the “given value” by the “new value”

-—#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case572
(IN kp INT,
in memName VARCHAR (20) ,
IN given value VARCHAR(100),
IN new _value VARCHAR (100)
)

SPECIFIC Case572

LANGUAGE SQL

BEGIN ATOMIC

Page 10

DBTechLab SQL/JSON on RDBMS Databases
DECLARE ind INT;
DECLARE elemCount INT;
DECLARE gry expr VARCHAR(100);
DECLARE old value VARCHAR(100);
DECLARE upd expr VARCHAR(100);

SELECT SYSTOOLS.JSON LEN(J, 'mem5') INTO elemCount

draft 2025-12-29 ML, SJH, FL, KS

FROM Tl WHERE K = kp;
-- Loop through the JSON members
SET ind = 0;
WHILE ind < elemCount DO
BEGIN
-- Extract the value at the current index
SET gry expr = '$.'|| memName || '[' || ind || ']
SELECT JSON_VALUE(J, '' || gry expr || '') INTO old value
FROM T1 WHERE K = kp;
IF (old value = given value) THEN BEGIN
SET upd_expr =
'{S$set: ("' || memName || '.' [| ind [| '": ' || new value || ' }}';
UPDATE T1
SET J = SYSTOOLS.JSON_UPDATE(J, '' || upd expr || "'")
WHERE K = kp;
END;
END IF;
-- Increment the index
SET ind = ind + 1;
END;
END WHILE;
END;
@
--#SET TERMINATOR ;
Testing the pattern as follows
SELECT JSON_QUERY (J, '$' returning varchar (300)) FROM Tl WHERE K = 1;
CALL Case5 2 (1, 'mem5',6'123', '127"');
SELECT JSON_QUERY (J, 'S$' returning varchar(300)) FROM Tl WHERE K = 1;
ROLLBACK;
db2 => SELECT JSON QUERY (J, '$' returning varchar(300)) FROM Tl WHERE K = 1;
1
{ "meml" 123, "mem2" "123", "mem3" true, "mem4" null, "memb" [123, "123", true,
null, [1, 2 1, { }l, "memoe" : { "m61" 1, "m6e2" "123", "moe3" true, "m64" null, "m65"
[2, 31, "mé6ée"™ : { } } }
1 record(s) selected.
db2 => CALL Case5 2 (1, 'mem5',6'123', '127'");
Return Status = 0
db2 => SELECT JSON_QUERY (J, '$' returning varchar (300)) FROM Tl WHERE K = 1;
1
{ "meml" 123, "mem2" "123", "mem3" true, "mem4" null, "mem5" : [127, 127, true, null,
[1, 21, { } 1, "mem6" : { "mo6l" 1, "mée2" "123", "m63" true, "m64" null, "me6e5" : [
2, 31, "meo6" : { } } }
1 record(s) selected.

db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Note: The solution treats integer value 123 and string value “123” as the sme.

Page 11

Case 6.1: Deleting an existing element found by position

III

Like deleting a member by only marking it as deleted by value “null”, the same concerns elements in

the array value of a given member.

-- See Baklarz p 135
-- "It is not actually possible to remove an item from an array, but it is
-- possible to set the specific array value to null."

UPDATE T1

SET J = SYSTOOLS.JSON UPDATE (J, '{Sunset: {"mem5.0": null}}")
WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY (J, 'S$.mem5' RETURNING CHAR(60)) AS memb
FROM T1 WHERE K = 1;

ROLLBACK;

db2 => UPDATE T1
db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '{Sunset: {"mem5.0": null}}"')
db2 (cont.) => WHERE K = 1;
Number of rows affected : 1
DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY (J, 'S$.mem5' RETURNING CHAR(60)) AS mem5
db2 (cont.) => FROM Tl WHERE K = 1;

K MEMS5

1 [null, "123", true, null, [1, 2 1, { 1} 1]
1 record(s) selected.

db2 => --
db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Case 6.2: Deleting all existing elements found by given value

This pattern is based on the pattern 5.2 modified to replace the old matching elements by literal
“null”.

--#SET TERMINATOR @
CREATE OR REPLACE PROCEDURE Case6 2
(IN kp INT,
in memName VARCHAR (20) ,
IN given value VARCHAR(100)
)
SPECIFIC Caseb 2
LANGUAGE SQL
BEGIN ATOMIC
DECLARE ind INT;
DECLARE elemCount INT;
DECLARE gry expr VARCHAR(100);
DECLARE old value VARCHAR(100);
DECLARE upd_expr VARCHAR(100);

SELECT SYSTOOLS.JSON LEN(J, 'mem5') INTO elemCount
FROM T1 WHERE K = kp;

-- Loop through the JSON members

SET ind = 0;

WHILE ind < elemCount DO

BEGIN
-- Extract the value at the current index
SET qry expr = '$.'|| memName || '[' || ind || "]"' ;
SELECT JSON_VALUE(J, '' || gry_expr || '') INTO old value

Page 12

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

FROM T1 WHERE K = kp;
IF (old value = given value) THEN BEGIN
SET upd expr =
"{$set: {"'" || memName || '.' || ind || '"": null }}"';
UPDATE T1
SET J = SYSTOOLS.JSON UPDATE (J, "'
WHERE K = kp;
END;
END IF;
-- Increment the index
SET ind = ind + 1;
END;
END WHILE;
END;
@
--#SET TERMINATOR ;
COMMIT;

| upd_expr || '")

SELECT JSON QUERY (J, 'S$' returning varchar(300)) FROM Tl WHERE K
CALL Case6 2 (1, 'mem5',6'123");

SELECT JSON_QUERY (J, '$' returning varchar(300)) FROM Tl WHERE K = 1;
ROLLBACK;

1
=

db2 => SELECT JSON QUERY (J, '$' returning varchar(300)) FROM Tl WHERE K = 1;

{ "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123", true,
null, [1, 21, { } 1, "mem6" : { "m6l" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"
[2, 31, "me6" : { } } }

1 record(s) selected.
db2 => CALL Case6_2 (1, 'mem5',6'123");

Return Status = 0
db2 => SELECT JSON_QUERY (J, '$' returning varchar (300)) FROM Tl WHERE K = 1;

{ "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [null, null, true,
null, [1, 21, { } 1, "mem6" : { "m6l" : 1, "me62" : "123", "m63" : true, "m64" : null, "m65"
[2, 31, "meoe"™ = { } } }

1 record(s) selected.

db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

|M

The “deleted” elements are now just replaced by “null” values. However, copying the whole element list of
the selected member as string to a variable “elements”, using REPLACE(elements, 'null,’, ") function the null
elements can be removed. Then updating the selected member with the updated element list, all “deleted”
elements will be removed like in following experiment:

db2 => CALL Case6_2 (1, 'mem5',6'123");

Return Status = 0
db2 => SELECT JSON QUERY (J, '$' returning varchar(300)) FROM Tl WHERE K = 1;

1
{ "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [null, null, true,
null, [1, 2 1, { }1l, "mem6" : { "m6l"™ : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"

[2, 31, "mee"™ : { } } }
1 record(s) selected.

db2 => --#SET TERMINATOR @

Page 13

db2 => CREATE OR REPLACE PROCEDURE CleanNullsFor

db2 (cont.) => (IN kp INT,

db2 (cont.) => IN memName VARCHAR (30),

db2 (cont.) => OUT gryPath VARCHAR (100),

db2 (cont.) => OUT upd_expr VARCHAR (500) ,

db2 (cont.) => OUT elems before VARCHAR(400),

db2 (cont.) => OUT elements VARCHAR (400)

db2 (cont.) =>)

db2 (cont.) => SPECIFIC CleanNullsFor

db2 (cont.) => LANGUAGE SQL

db2 (cont.) => BEGIN

db2 (cont.) => -—- DECLARE elements VARCHAR (4000) ;

db2 (cont.) => -- DECLARE path VARCHAR(100) ;

db2 (cont.) => SET gryPath = '$.' || memName ;

db2 (cont.) => SELECT JSON QUERY (J, '' || gryPath || ''RETURNING VARCHAR (400))
db2 (cont.) => INTO elements

db2 (cont.) => FROM T1 WHERE K = kp;

db2 (cont.) => set elems before = elements;

db2 (cont.) => SET elements = REPLACE (elements, 'null,', '');

db2 (cont.) => SET elements = REPLACE (elements, ' ', ''");

db2 (cont.) => SET elements = REPLACE (elements, ',', ', ");

db2 (cont.) => SET elements = REPLACE (elements, ', null]l', '1'");

db2 (cont.) => -- SET updPath = '$.' || memName || ': ' || elements || '' ;
db2 (cont.) => SET upd expr =

db2 (cont.) => '{$set: {"'" || memName || '": ' || elements || '}}"';
db2 (cont.) => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON UPDATE (J, '' || upd expr || '")
db2 (cont.) => WHERE K = kp;

db2 (cont.) => END;

db2 (cont.) => @

DB20000I The SQL command completed successfully.
db2 => --#SET TERMINATOR ;

db2 => --

db2 => CALL CleanNullsFor(l, 'mem5',?,?2,?,7?);

Value of output parameters

Parameter Name : QRYPATH

Parameter Value : $.mem5

Parameter Name : UPD_EXPR

Parameter Value : {$set: {"mem5": [true, [1, 21, {}1}}
Parameter Name : ELEMS BEFORE

Parameter Value : [null, null, true, null, [1, 2 1, { } ol
Parameter Name : ELEMENTS

Parameter Value : [true, [1, 2], {}]

Return Status = 0
db2 => SELECT JSON_QUERY(J, '$S.mem5' RETURNING VARCHAR (400)) FROM Tl WHERE K= 1;

1 record(s) selected.

db2 => ROLLBACK;
DB20000I The SQL command completed successfully.

Now that we have verified the intermediate values of the OUT parameters, we can move them into local varia-
bles. To change the semantics of “delete” to “remove”, the actions of “cieanNullsFor” should be applied at
the end of procedure “caseé 2”.

Page 14

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Summary

SQL/ISON implementations on different Db2 editions vary. We are interested in the Db2 for LUW (Linux, Unix
and Windows) edition. Surprisingly, in this edition the JSON_TABLE function does not include the FOR ORDI-
NALITY clause. Also, it doesn’t include means for sorting out the count of top-level members in a JSON docu-
ment, and no means for accessing the members by position. The missing JSON_KEYS() function could be im-
plemented by some Python subprogram applying the keys() function as following

>>> myjson = {"mem1":123,"mem?2":"123","mem3":true,"mem4":null,"mem5": [123, "123", true, null, [1, 2], {}],"mem6": { "m61":1,
"m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }}

>>> print(myjson.keys())

dict_keys(['mem1', 'mem2', 'mem3', 'mem4', 'mem5’, 'mem6'])

>>>

but the interface needs to be sorted out somehow (see Appendix 3)

JSON manipulation experiments using SQL/JSON of Oracle 23ai

The ISO SQL/JSON of Oracle native JSON data type based on its binary storage implementation OSON discussed
by Liu et al. (SIGMOD 2016, VLDB 2020) and Gugnani et al. (SIGMOD 2025) featuring direct in-memory updates
of JSON document without full document replacements.

In addition to the general numeric data types of JSON, JSON/OSON extends types to packed decimal, IEEE
float/double, date, timestamp, interval, and raw types of SQL primitives.

From SQL/JSON 2016 standard JSON/OSON implements cast functions of strings such as .number(), .string(),
.date(), .binary() to non-string data types.

The SQL/JSON path expression/filter expression implementations of JSON_TRANSFORM function will greatly
simplify our JSON update experiments and obviously provide performance boost.

Setting up the experiment

For our experiments we create the following SQL table for storing our JSON document

CREATE TABLE T1 (
K INT NOT NULL PRIMARY KEY,
J JSON) ;

Inserting JSON document as part of an inserted rows

-— our basic document without duplicates
INSERT INTO T1 (K, J) VALUES
(1, '"{ meml: 123,
mem2: "string",
mem3: true,
memd: null,
mem5: [123, "string", true, null, []],
mem6: { m62: "string", m63: true, m64: null, m65: [], m66: {} }
Pt
-- document with duplicate keys and elements
INSERT INTO T1 (K, J) VALUES
(2, "{ meml: 123,

Page 15

mem2: "123",
mem3: true,
mem4: null,

mem5: [123, "123", "string", true, 123, 124, 124, null, [1, 2],
mem6: { "mol":1, "m62":"123", "m63": true, "m64": null, "me5":[2,
"m66":{} },
mem7: 123,
mem8: "123"
Pt
COMMIT;

123 1,

In spite of the ISO SQL/JSON specification the JSON update operations in different RDBMS systems and even
versions differ. In the following we will focus on use of Oracle 23ai implementation making extensive use of

JSON path and its filter expressions®.
Accessing JSON objects

Case 1: Adding a new member on top level

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, INSERT 'S.mem7' = 'new')
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_ SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_SERTALIZE (JPRETTY)

{

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"memb5"
[
123,
"i23",
true,
null,
[
]
]I
"mem6"
{
"me2" : "123",
"m63" : true,
"m64" : null,
"me5"
[
}I
"meo"

by

3Filter expressions are defined in chapter “5.12 Filter expression” of “SQL/JSON: Part 2 -Querying JSON”, and

also explained on page “17.2 SQL/JSON Path Expression Syntax” of JSON Developer’s Guide.

Page 16

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

"mem7" : "new

SQL> ROLLBACK;

Rollback complete.

Case 2.1: Updating value of an existing member found by key
SQL> UPDATE T1
2 SET J = JSON TRANSFORM (J, SET '$.meml' = 124)
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_SERTIALIZE (JPRETTY)

"meml" : 124,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem5"
[
123,
"i23",
true,
null,
[
]
]I
"mem6"
{
"me2"™ : "123",
"m63" : true,
"m64" : null,
"me5" :
[
JI
"m6o"

SQL> ROLLBACK;

Rollback complete.

Case 2.2: Updating value of all existing members found by given value

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REPLACE '$.x2 (@==123)"' = 124)
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON SERIALIZE (J PRETTY)

Page 17

2* FROM T1 WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

"meml"
"mem2"
"mem3"
"mem4"
"mem5"
"mem6"
{
"me2"
"m63"
"m64"
"me5"

124,
"i23",
true,
null,
124,

"123",
true,
null,

SQL> ROLLBACK;

Rollback complete.

SQL>

Case 3.1: Deleting an existing member found by key

SQL> UPDATE T1

2 SET J
3* WHERE

= JSON_TRANSFORM

K=1;

1 row updated.

SQL> SELECT JSON_SERIALIZE
2* FROM T1 WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

"mem2"
"mem3"
"mem4"
"memb5"
[
123,
"i23",
true,
null,
[
]
]I
"mem6"
{
"me2"
"m6e3"
"m64"
"m65"
[
]I
"m66"
{
}

"123",
true,
null,

ll123ll’
true,
null,

Page 18

DBTechlLab SQL/JSON on RDBMS Databases

SQL> ROLLBACK;

Rollback complete.

Case 3.2: Deleting all existing members found by given value

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REMOVE '$.*2 (@==123) ")
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

{

"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem6"
{
"me2"™ : "123",
"m63" : true,
"mé64" : null,
"me5"
[
1,
"m66"

SQL> ROLLBACK;
Rollback complete.

UPDATE T1

SET J = JSON_TRANSFORM (J, REMOVE 'S$.*?(@==123)")
WHERE K = 2;

SELECT JSON_SERIALIZE (J PRETTY)

FROM T1 WHERE K = 2;

ROLLBACK;

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REMOVE 'S$.*?(@==123)")
3* WHERE K = 2;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 2;

JSON_SERIALIZE (JPRETTY)

"mem3" : true,
"mem4" : null,
"mem6"
{
"m6l" : 1,
"me2" "123",
"m63" : true,
"mo64" : null,

draft 2025-12-29 ML, SJH, FL, KS

Page 19

SQL> ROLLBACK;

Rollback complete.
Accessing JSON arrays

Case 4: Adding a new element into an array

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, APPEND 'S.mem5' = 124)
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_ SERIALIZE (J PRETTY)
2* FROM T1 WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

{
"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem5"
[
123,
"i23",
true,
null,
[
1,
124
]l
"mem6"
{
"me2"™ : "123",
"m63" : true,
"m64" : null,
"m6e5" :

SQL> ROLLBACK;
Rollback complete.

SQL>

Case 5.1: Updating value of an existing element found by position

Page 20

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

SQL> UPDATE T1
2 SET J = JSON TRANSFORM (J, SET 'S.mem5[0]"' = 124)
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
2* FROM T1 WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

{

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem5"
[
124,
"123",
true,
null,
[
]
1,
"mem6"
{
"me2" : "123",
"m63" : true,
"m64" : null,
"m65"
[
]l
"m6e6"

{
}

SQL> ROLLBACK;

Rollback complete.

Case 5.2: Updating value of all existing elements found by value

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REPLACE 'S.mem5[*]? (@==123)"' = 124)
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_SERIALIZE (JPRETTY)

{

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem5"
[

124,

"123",

true,

null,

[

Page 21

]
]l
"mem6"

{

"m62" : "123",
"m63" : true,
"m64" : null,
"m6e5" :

[

]I

"m6e"

SQL> ROLLBACK;

Rollback complete.

Case 6.1: Deleting an existing element found by position

SQL> UPDATE T1

2 SET J = JSON_TRANSFORM (J, REMOVE '$.mem5[0]")

3* WHERE K = 1;
1 row updated.

SQL> SELECT JSON SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_SERTALIZE (JPRETTY)

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"memb5"
[
"i23",
true,
null,
[
1
JI
"mem6"
{
"me2" : "123",
"m63" : true,
"m64" : null,
"me5" :
[
]I
"meo"

SQL> ROLLBACK;

Page 22

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Rollback complete.

SQL>

Case 6.2: Deleting all existing elements found by given value

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REMOVE 'S$.mem5[*]?(@==123)")
3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_ SERIALIZE (J PRETTY)
2* FROM Tl WHERE K = 1;

JSON_ SERIALIZE (JPRETTY)

{

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"memb"
[
"i23",
true,
null,
[
]
]l
"mem6"
{
"me2"™ : "123",
"m63" : true,
"mo64" : null,
"me5" :
[
]V
"m66"

SQL> ROLLBACK;

Rollback complete.

SQL> UPDATE T1
2 SET J = JSON_TRANSFORM (J, REMOVE 'S.mem5[*]?(@==123)")
3* WHERE K = 2;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY) FROM Tl WHERE K = 2;

JSON SERIALIZE (JPRETTY)

{

"meml" : 123,
"mem2" : "123",
"mem3" : true,
"mem4" : null,
"mem5"
[

"string",

true,

124,

Page 23

]l
"mem6"
{
"mel"
"me2"
"m63"
"m64"
"me5"

}I
"mem7"
"mem8"

ll
"123",
true,
null,

123,
ll123ll

SQL> ROLLBACK;

Rollback complete.

JSON manipulation experiments using T-SQL/JSON of SQL Server

See the documentation at

https://learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-verl7

Experimenting the basic operations on part of JSON objects or arrays

Setting up the experiment

In following the tests are run by SQL Server Express edition 2022

USE JsonDemo;
DROP TABLE T1;
CREATE TABLE T1 (

K INT NOT NULL PRIMARY KEY,
J NVARCHAR (MAX) ,
CONSTRAINT CHK J JSON CHECK

)i

For our experiments we insert into table T1 the following contents:

-- Inserting our test documents
-- Note: in T-SQL/JSON key names need to be enclosed in double quotes!

BEGIN TRANSACTION;
-- our basic document without duplicates
INSERT INTO T1 (K, J) VALUES
(1, SYSTOOLS.JSON2BSON ('{
"meml":123,
"mem2":"123",

the JSON type is not yet available

Page 24

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS
"mem3":true,
"mem4" :null,
"mem5": [123, "123", true, null, [1, 2], {} 1,
"mem6": { "mé6l":1, "me62":"123", "m63": true, "m64": null, "me5":[2, 3], "mé66":{} }
P
-- document with duplicate keys and elements
INSERT INTO T1 (K, J) VALUES
(2, SYSTOOLS.JSON2BSON ('{
"meml": 123,
"mem2": "123",
"mem3": true,
"mem4": null,
"mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123 1,
"mem6": { "mé6l":1, "me62":"123", "m63": true, "m64": null, "me5":[2, 3], "mé6e":{} },
"mem7": 123,
"mem8": "123"
AR
COMMIT;

T-SQL/JSON doesn’t have any pretty print format for JSON, but for example, we can use
JSON_VALUE for simple values by limiting value lengths by LEFT() functions

SELECT LEFT(K, 4) AS K,

LEFT (JSON_VALUE (J, '$.meml'), 4) AS meml,

LEFT (JSON_VALUE(J, '$.mem2'), 6) AS mem2,

LEFT (JSON_VALUE(J, '$.mem3'), 6) AS mem3,

LEFT (JSON_VALUE(J, '$.mem4'), 6) AS mem4,

LEFT (JSON_VALUE(J, '$.mem5[0]'), 10) AS mem5 O,

LEFT (JSON_VALUE(J, '$.mem5[4]'), 10) AS mem5 4,

LEFT (JSON_VALUE(J, '$.mem5[4][1]'), 10) AS mem5 4 1,

LEFT (JSON_VALUE (J, '$.mem6.m61'), 10) AS mem6 m6l,

LEFT (JSON_VALUE (J, 'S$.mem6.m66'), 10) AS mem6 m66
FROM T1;
K meml mem2 mem3 mem4 mem5 0 mem5 4 mem5 4 1 mem6 m61l memé6 m66
1 123 string true NULL 123 NULL 2 1 NULL

(1 row affected)

OPENJSON function of T-SQL/JSON

https://www.sqlservertutorial.net/sqgl-server-json-functions/sql-server-openjson/

Many examples SQL Server documentation use the proprietary function OPENJSON of T-SQL/JSON. OPENJSON
maps JSON text into a set of rows and columns, returning columns: key, value, and type, for each key/value
pair in the JSON.

syntax:

OPENJSON (jsonExpression
<with clause> ::= WITH (

[, path])
{ colName type

[<with clause>]
[column path] [AS JSON] } [,...n])

Optional WITH clause defines an explicit schema, specifying columns, their types, and the JSON path for each
value, allowing load JSON data directly into SQL Server tables.

In following we try to apply the Example 6 - Simple example with JSON content for parsing key/value pairs in
our test JSON.

ALTER DATABASE JsonDemo SET COMPATIBILITY LEVEL = 130;
DECLARE @json NVARCHAR (MAX) ;

SELECT @json = J FROM Tl WHERE K=1;

SELECT LEFT ([key], 8) AS [kevy],
FROM OPENJSON (€json) ;

[value]

key value

Page 25

https://www.sqlservertutorial.net/sql-server-json-functions/sql-server-openjson/

meml 123

mem?2 string

mem3 true

memé NULL

memb [123, "string", true, null, [1, 2], {}]

memo6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2,

(6 rows affected)

DECLARE @json NVARCHAR (MAX) ;

SELECT @json = J FROM Tl WHERE K=2;
SELECT LEFT ([key], 8) AS [key], [value]
FROM OPENJSON (@json) ;

31,

123
3]’

"m66": {}

]
"m66": {}

}

}

key value

meml 123

mem2 123

mem3 true

mem4 NULL

mem5 [123, "123", "string", true, 123, 124, 124, null, [1, 21, {},
memo6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2,
mem?7 123

mem8 123

(8 rows affected)

Surprisingly, in the OPENJSON report above, both the integer value 123 and string value “123” are listed as

integers.

Manipulation tests of our JSON test document:

Accessing JSON objects

Case 1: Adding a new member on top level

EGIN TRANSACTION;

UPDATE T1

SET J = JSON_MODIFY (J, 'S.mem7', 'new value')
WHERE K = 1;

(1 row affected)

SELECT LEFT (JSON_VALUE (J, '$.mem7'), 10) AS mem7 FROM T1;
mem?7

new value
ROLLBACK;

Case 2.1: Updating value of an existing member found by key

BEGIN TRANSACTION;

UPDATE T1

SET J = JSON MODIFY (J, 'S.mem4', 'new value')
WHERE K = 1;

(1 row affected)

SELECT LEFT(JSON_VALUE(J, 'S.mem4'), 10) AS mem4 FROM T1;
mem4

new value

ROLLBACK;

Page 26

DBTechlLab SQL/JSON on RDBMS Databases

Case 2.2: Updating value of all existing members found by given value

For this we will use following script, first to the basic test document

BEGIN TRANSACTION;
DECLARE @json NVARCHAR (MAX) ;
DECLARE @path NVARCHAR (20) ;
DECLARE @key NVARCHAR(20);
SELECT @json = J FROM Tl WHERE K=1;
DECLARE cur CURSOR FOR
SELECT [key]
FROM OPENJSON (@json)
WHERE [value] = '123';
OPEN cur;
FETCH NEXT FROM cur INTO Qkey;
WHILE @@FETCHisTATUS =0
BEGIN
SET @path = CONCAT('S.', @key);
UPDATE T1 SET J = JSON MODIFY (J, @path, '124");
FETCH NEXT FROM cur INTO @key;

END;
CLOSE cur;
DEALLOCATE cur;
GO
SELECT LEFT(JSON_VALUE(J, '$S.meml'), 10) AS meml
FROM T1;

(1 row affected)
meml

(1 row affected)
ROLLBACK;

.. and applying it next to JSON document of K 2:

BEGIN TRANSACTION;
DECLARE @json NVARCHAR (MAX) ;
DECLARE (@path NVARCHAR (20) ;
DECLARE (@key NVARCHAR(20) ;
SELECT @json = J FROM Tl WHERE K=2;
DECLARE cur CURSOR FOR
SELECT [key]
FROM OPENJSON(@json)
WHERE [value] = '123';
OPEN cur;
FETCH NEXT FROM cur INTO @key;
WHILE QEFETCH_STATUS = 0
BEGIN
SET @path = CONCAT('S$.', @Qkey);
UPDATE T1 SET J = JSON_MODIFY(J, @path, '124"');
FETCH NEXT FROM cur INTO @key;
END;
CLOSE cur;
DEALLOCATE cur;
GO
DECLARE @json NVARCHAR (MAX) ;
SELECT @json = J FROM Tl WHERE K=2;
SELECT LEFT ([key]l, 8) AS [key], [valuel]
FROM OPENJSON (@json) ;
GO

(2 rows affected)

(2 rows affected)

draft 2025-12-29 ML, SJH, FL, KS

Page 27

(2 rows affected)

(2 rows affected)

key value

meml 124

mem2 124

mem3 true

memé NULL

memb5 [123, "123", "string", true, 123, 124,
memo6 { "m61":1, "m62":"string", "m63": true,
mem7 124

mem8 124

(8 rows affected)
ROLLBACK;

124,

"m64":

null, [1, 21,

null,

"m65" :

{,
[z,

123
31,

]

"m66" :

{}

}

Surprisingly beside the integer value 123 of members mem1, mem7 and memS, this affected also to

string “123” in mem2.

Case 3.1: Deleting an existing member found by key

BEGIN TRANSACTION;

UPDATE T1 SET J = JSON MODIFY (J, '$.meml',

GO
DECLARE (@json NVARCHAR (MAX) ;
SELECT @json = J FROM Tl WHERE K=1;

SELECT LEFT ([key], 8) AS [key], [value]

FROM OPENJSON (@json) ;
GO

(2 rows affected)

NULL) ;

key value

mem?2 string

mem3 true

mem4 NULL

mem5 [123, "string", true, null, [1,
memo6 { "m61":1, "m62":"string", "m63":

(5 rows affected)
ROLLBACK;

2], {}

true,

]

"m64":

null,

"m65" :

[z,

31,

"m66" :

Unlike by some other implementations, in T-SQL/JSON setting the value of member to NULL

removes the selected member.

Case 3.2: Deleting ALL existing members found by given value

BEGIN TRANSACTION;
DECLARE @json NVARCHAR (MAX) ;
DECLARE (@path NVARCHAR (20) ;
DECLARE @key NVARCHAR(20) ;
SELECT @json = J FROM Tl WHERE K=2;
DECLARE cur CURSOR FOR

SELECT [key]

FROM OPENJSON(@json)

WHERE [value] = '123';
OPEN cur;
FETCH NEXT FROM cur INTO @key;
WHILE @@FETCH_STATUS = 0

BEGIN

SET @path = CONCAT ('$.', Qkey);

{}

}

Page 28

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

UPDATE T1 SET J = JSON_MODIFY (J, @path, NULL);
FETCH NEXT FROM cur INTO @key;
END;

CLOSE cur;

DEALLOCATE cur;

GO

DECLARE @json NVARCHAR (MAX) ;

SELECT @json = J FROM Tl WHERE K=2;

SELECT LEFT ([key], 8) AS [key], [value]

FROM OPENJSON (@json) ;

GO

(2 rows affected)
(2 rows affected)
(2 rows affected)

(2 rows affected)

key value

mem3 true

memé NULL

memb [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123 1]

memé6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "meo6":{} }

(4 rows affected)
ROLLBACK;

Like in 3.1 the function call of Json_MODIFY (J, epath, NULL) removed all affected members.

Accessing JSON arrays

Case 4: Adding a new element into an array

BEGIN TRANSACTION;

UPDATE T1

SET J = JSON MODIFY (J, 'append $.mem6.m65', 4)
WHERE K = 1;

(1 row affected)

SELECT J FROM T1 WHERE K = 1;

{ "meml1l":123, "mem2":"123", "mem3":true, "mem4":null,
"mem5": [123, "123", true, null, [1, 2], {} 1,
"mem6": { "m6l":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3,4], "m66":{} }

(1 row affected)
ROLLBACK;

Case 5.1: Updating value of an existing element found by position
BEGIN TRANSACTION;

UPDATE T1

SET J = JSON_MODIFY (J, '$.mem6.m65[1]', 5)

WHERE K = 1;

(1 row affected)

SELECT J FROM Tl WHERE K = 1;

{ "meml":123, "mem2":"123", "mem3":true, "mem4":null,

Page 29

"mem5": [123, "123", true, null, [1, 21, {} 1,
"mem6": { "m6l":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 5], "mee":{} }

(1 row affected)
ROLLBACK;

Case 5.2: Updating value of all existing elements found by value

We test this on the array of memb5 in document K=2, first copying the array contents into temporary
variable @arr5, then replacing all 123 values by value 125, and finally updating the array value of
member mem5 by the modified variable:

BEGIN TRANSACTION;

DECLARE @json NVARCHAR (MAX) ;
DECLARE @arr5 NVARCHAR (100) ;

SELECT @json = J FROM Tl WHERE K=2;

SELECT @arr5 = [value]
FROM OPENJSON (@json) WHERE [key] = 'memb5';
SET @arr5 = REPLACE (@Garr5, '123', '125'");

UPDATE T1

SET J = JSON_MODIFY (J, '$.mem5', @arr5);
-- verifying the contents

SELECT @json = J FROM Tl WHERE K=2;
SELECT LEFT ([key], 8) AS [key], [value]
FROM OPENJSON (@json) ;

key value

meml 123

mem2 123

mem3 true

memé NULL

memb [125, "125", "string", true, 125, 124, 124, null, [1, 21, {}, 125]

memo6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 31, "m6e6":{} }
mem7 123

mem8 123

(8 rows affected)
ROLLBACK;

Case 6.1: Deleting an existing element found by position

Our example below, based on solution by Kari Silpio, will remove the second element (string “123")
from the array value of member mem5. The general Common Table Expression (CTE) is explained,
for example at https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-

sgl?view=sql-server-ver1l6

BEGIN TRANSACTION;
DECLARE @json NVARCHAR (MAX) ;
DECLARE @arr5 NVARCHAR (MAX) ;
-- Replacing the element [1] by empty string
UPDATE T1
SET J = JSON MODIFY (J, '$.mem5[1]', '')
WHERE K = 2;
-- The '' wvalue is updated as "" which will be as removed as follows
WITH cte (arrayAsString) AS

(SELECT JSON_ QUERY (J, '$S.mem5') FROM T1 WHERE K = 2)

[}

SELECT @arr5 = REPLACE (REPLACE (arrayAsString, ',""', '"),', ""', '")
FROM cte;

-- updated @arr5 will now be set back to the document

UPDATE T1

Page 30

https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16

DBTechlLab SQL/JSON on RDBMS Databases

SET J = JSON_MODIFY (J, '$.mem5', Rarr5);
SELECT @json = J FROM Tl WHERE K=2;

(1 row affected)
SELECT LEFT ([key], 8) AS [key], [value]
FROM OPENJSON (@json) ;

(2 rows affected)

}, 123
"m65": [2,

]

3]’

"m66": {}

}

draft 2025-12-29 ML, SJH, FL, KS

key value

meml 123

mem2 123

mem3 true

mem4 NULL

memb5 [123, "string", true, 123, 124, 124, null, [1, 21, {
memé6 { "m61":1, "m62":"string", "m63": true, "m64": null,
mem?7 123

mem8 123

(8 rows affected)
ROLLBACK;

Note: this did not touch the original null element on the array.

Case 6.2: Deleting all existing elements found by given value

In following we will experiment on deleting all elements of duplicate value 123 in the array of mem5

in our test document K=2

BEGIN TRANSACTION;

DECLARE @json NVARCHAR (MAX) ;

DECLARE (@arr NVARCHAR (MAX) ;

-- reading the JSON to temporary variable @json
SELECT @json = J FROM Tl WHERE K=2;

-- reading the array value of mem5 temporary variable (@arr
SELECT @arr = [value]

FROM OPENJSON (@json) WHERE [key] = 'memb5';

print 'tracing the work on the arr copy:';

print @arr;

-- Replacing elements having value 123 by empty string "'
-- (thus keeping possible null values)

SET @arr = REPLACE (@Garr, '123', '');

print @arr;

-- fixing the carbage strings

SET @arr = REPLACE (@arxr, '[,', '[");

SET Qarr = REPLACE (Qarr, '"",', '');

SET @arr = REPLACE (@Garr, ', ,', ',");

-- restoring the fixed array as new value of memb
UPDATE T1

SET J = JSON_MODIFY (J, 'S.mem5', Qarr)

WHERE K=2;

print 'verifying the contents';

SELECT @json = J FROM Tl WHERE K=2;

SELECT LEFT ([key], 8) AS [key], [value]

FROM OPENJSON (@json) ;

tracing the work on the arr copy:
[123, "123", "string", true, 123, 124, 124, null, [1, 2],
[, "", "string", true, , 124, 124, null, [1, 21, {}, 1

(1 row affected)
verifying the contents

{,

123

]

key value
meml 123
mem2 123
mem3 true

Page 31

mem4 NULL

memb5 ["string", true, 124, 124, null, [1, 21, {},]

memo6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }
mem?7 123

mem8 123

(8 rows affected)
ROLLBACK;

Summary

The missing filter expression implementation makes current T-SQL/JSON quite different for developers, com-
pared with the SQL/JSON implementations of Oracle and PostgreSQL. However, the dedicated OPENJSON
function makes life more easy.

JSON manipulation experiments using pSQL/JSON of PostgreSQL

PostgreSQL community proceeding with the development of the OpenSource edition of the PostgreSQL system
has been innovative extending the relational system with its native JSON implementation in 2012, before ANSI
woke up to need for the SQL/JSON standard. So, the PostgreSQL already had “exotic” JSON manipulation op-
erators of its own, when the ANSI workgroup came in 2014 with their proposal on SQL/JSON query language.
The PostgreSQL community was awake and adapted the SQL/JSON query functions in the SQL language of their
own, including the path expression and filter expressions, with flavours of their own.

For the storage datatype PostgreSQL has both plain textual JSON and binary JSONB with type-sensitive func-
tions of their own and type cast operators “::type” back and forth.

Special JSON extract operators “->” to text value and “->>” to object type add options in its pSQL/JSON dialect
(see NEON'’s article).

The result is a “culture shock” for us, developers who have seen PostgreSQL just as an SQL dialect.

Setting up the experiment

In following the tests are run by version 17 of PostgreSQL in Debian 12 VM in which we have created testdb
database.
Using psql client we turn autocommit mode off, create table T1 and insert there our test document as follows

dbtech@debianll:~$ psqgl testdb
psgl (13.18 (Debian 13.18-0+debllul))
Type "help" for help.

testdb=# select version();
PostgreSQL 17.5 ...

-- Note: this is case sensitive!
\set AUTOCOMMIT OFF

CREATE TABLE T1 (
K INT NOT NULL PRIMARY KEY,
J JSONB) ;

Note: JSONB is the binary storage solution of PostgreSQL. Benefits of JSONB over the textual JSON solution
are listed, for example, in the “PostgreSQL JSON” tutorial by NEON.
For our experiments we insert into table T1 the following contents:

Page 32

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

-- Row with a simple JSON document without duplicate values
INSERT INTO T1 (K, J) VALUES
(L, '"{ "meml":123, "mem2":"123", "mem3":true, "mem4":null,
"mem5": [123, "123", true, null, [1, 2], {} 1,
"mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }
Py

-- Row with JSON document with duplicate keys and elements
INSERT INTO T1 (K, J) VALUES
(2, '"{ "meml": 123,

"mem2": "123",

"mem3": true,

"mem4": null,

"mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123 1,

"mem6": { "m61":1, "m62":"string", "mé63": true, "m64": null, "m65":[2, 3], "me6":{} 1},
"mem7": 123,

"mem8": "123"}'");

COMMIT;

Note: PostgreSQL requires JSON key names to be enclosed in double quotes, but numeric values, literals, as
well as array and object values are not quoted.

Reporting whole document contents by pSQL “SELECT * FROM ..” generates an archaic UNIX pager report view

for dump terminals from which view we can get rid only by pressing the key of letter “q” — a shocking case if
you don’t remember the solution. Use of the pager view in pSQL sessions can be turned off by command

testdb=> \pset pager off
Pager usage is off.

A more compact formatting can be obtained by the “composite form” provided by the PostgreSQL JSON func-
tion jsonb_each () as follows:

testdb=# (SELECT (jsonb_each(J)).* FROM Tl WHERE K=1);

| value
______ o
meml | 123
mem2 | "123"
mem3 | true
mem4 | null
mem5 | [123, "123", true, null, [1, 2], {}]
mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "me6e5": [2, 3], "meo6": {}}
(6 rows)
(EOD)

As default, also this report of the “composite form” would use the pager view.

For shorter reporting, contents of a single member can be generated by the extract operator “->”, for example
“mem1” as follows

testdb=> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;
k | meml

PostgreSQL JSON functions include also “pretty print” solution, as we demonstrate below on member
“memb5”:

testdb=> SELECT jsonb pretty(J->'mem5') AS mem5

Page 33

FROM T1 WHERE K=1;

memb5
[+
123, +
"i23",+
true, +
null, +
[+
1, +
2 +
1, +
{ +
} +
]
(1 row)
testdb=*>

Accessing JSON objects on top level in the path expression
Case 1: Adding a new member on top level

For this pattern pSQL/JSON has ready functionality

UPDATE T1
SET J = jsonb_set(J, '{mem7}', '"new"')
WHERE K = 1;

testdb=> UPDATE T1

SET J = jsonb_set(J, '{mem7}', '"new"')

WHERE K = 1;

UPDATE 1

testdb=> SELECT K, J -> 'mem7' AS mem7 FROM Tl WHERE K = 1;
k | mem7

Case 2.1: Updating value of an existing member found by key

For this pattern pSQL/JSON has ready functionality

UPDATE T1

SET J = jsonb_set(J, '{meml}',6 '124")

WHERE K = 1;

testdb=*> UPDATE T1

SET J = jsonb set(J, '{meml}',6 '124")

WHERE K = 1;

UPDATE 1

testdb=*> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;
k | meml

testdb=*> rollback;

ROLLBACK

testdb=> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;
k | meml

Page 34

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Case 2.2: Updating value of all existing members found by given value

The JSON structure does not require member values to be unique, so it is possible that multiple members have
accidently the same value.
But let’s start with the simple case assuming that there are no duplicate values.

Searching the key value of the member having the given value, for example ‘123’ can be done as follows

SELECT key FROM T1, Jjson_each(J) WHERE value = '123';

and passing the key to following update

UPDATE T1
SET J = Jjsonb_set(J, '{key}',6 '124")
WHERE K = 1;

.. might look something like following

testdb=*> UPDATE T1 SET J = jsonb set (J,
'{ (SELECT key::jsonb FROM T1l, json each(T1l.J::jsonb)
WHERE value::jsonb = 123)}', '124', true)
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;

testdb=*> rollback;
ROLLBACK

So, the update has failed, even if PostgreSQL seems to accept the statement. The embedded SELECT state-
ment in the quoted expression is not a legal jsonb path expression and just gets ignored.

The problem can be solved by forcing the SELECT statement string to be evaluated as an object by concat func-
tion as follows

testdb=> SELECT concat ('{', (SELECT key

FROM T1, jsonb_each(T1.J)

WHERE K=1 AND value = '123'),'}");
concat

and applying this in array for the path expression of the jsonb_set by the concat function

testdb=> UPDATE T1
SET J = jsonb set(J,
concat ('{', (SELECT key
FROM T1, jsonb each(T1.J)
WHERE K=1 AND value = '123'"),'}'")::text[],
'124'::jsonb,
true)
WHERE K=1;
UPDATE 1
testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)) .*
FROM T1
WHERE K=1) as dummy
WHERE value IN ('123','124");
key | value

Page 35

______ b
meml | 124
(1 row)

testdb=*> rollback;
ROLLBACK

So, this works in case of a unique value.

Next, we test the case of duplicate values using the slightly modified version of our test document of value 2
for the key K where the JSON column has multiple members having the same value 123. Note that in JSON the
integer value 123 is different than the string value “123”. Following query refreshes now the contents for us

(SELECT (jsonb_each(J)).* FROM Tl WHERE K=2);

nyp3m
)

key | value
______ o o
meml | 123
mem?2 | "string"
mem3 | true
mem4 | null
mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123]
mem6 | {"m6l": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}
mem?7 | 123
|
s

Applying now the same UPDATE statement raises ERROR

testdb=*> UPDATE T1
SET J = Jjsonb set(J,
concat ('{', (SELECT key
FROM T1, jsonb each(T1.J)
WHERE K=2 AND value = '123'"),'}'")::text[],
'124"::jsonb,
true)
WHERE K=2;
ERROR: more than one row returned by a subquery used as an expression

testdb=!> rollback;
ROLLBACK

The problem is that the embedded SELECT now returns two tuples, not one, so the concat function fails since it
is no longer concatenating a single string. There is no way to have jsonb set update more than one value
at a time.

The best alternative is to update one key at a time, using a loop in a PL/pgSQL function in which we pass data
via local variables between SQL statements, as shown below.

testdb=> CREATE OR REPLACE FUNCTION
update values in T1J(doc_no integer,
oldvalue jsonb,
newvalue jsonb,
countlimit integer default 2147483647
) RETURNS void AS $$
DECLARE akey text;
BEGIN
FOR akey IN
SELECT * FROM
(SELECT key from
(SELECT (jsonb each(J)).* FROM Tl WHERE K = doc no) as dummyl
WHERE value = oldvalue
LIMIT countlimit) AS dummyl
ORDER BY key ASC
LOOP
UPDATE T1

Page 36

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

SET J = jsonb_set ((SELECT J FROM Tl WHERE K=doc no),
concat ('{',akey,"}")::text[],
newvalue)

WHERE K=doc_no;

END LOOP;
RETURN;
END;
$$ LANGUAGE plpgsql;
CREATE FUNCTION
testdb=*> COMMIT;
COMMIT

By the optional parameter countlimit we pass value to LIMIT on keys selected by the SELECT scanning mem-
bers of the given oldvalue, to be included in the IN list of member keys to be passed then to the LOOP of UP-
DATE statements.

Applying this to the case of no duplicates, in the row of K=1:
testdb=> SELECT update values in T1J (1, '123', '456"'");

update values_in tl1j

(1 row)

testdb=*> (SELECT (jsonb each(J)).* FROM Tl WHERE K=1);

key | value

______ +___
meml | 456

mem2 | "string"

mem3 | true

mem4 | null

mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123]

mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m6e6": {}}

(6 rows)testdb=*> (SELECT (jsonb each(J)).* FROM Tl WHERE K=2);

Applying this to the case of multiple duplicates, in the row of K=2:

testdb=*> SELECT update_values_in T1J (2, '123', '456');
update values in tl1j

(1 row)

testdb=*> (SELECT (jsonb_each(J)).* FROM Tl WHERE K=2);

key value

456
"string"
true

[123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]
{"m61": 1, "m62": "string", "m63": true, "m64": null, "me6e5": [2, 3], "m66": {}}

456

|
+
|
|
|
mem4 | null
|
|
|
| ll123ll
S

)

Note finally that this function works for any values, not just integers.
testdb=*> SELECT update values in T1J (2, '123','[1,2,3]");

update values_in tl1j

(1 row)

testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)).*

Page 37

FROM T1
WHERE K=2) as dummy
WHERE value IN ('123','124','[1,2,31");

key | value
______ S,
meml | [1, 2, 3]
mem7 | 124

(2 rows)

testdb=*> SELECT update values in T1J (2, '[1,2,3]"','123");
update values_in tlj

(1 row)

testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)).*
FROM T1
WHERE K=2) as dummy
WHERE value IN ('123','124','[1,2,31");

key | value
______ b
meml | 123
mem7 | 124

(2 rows)

testdb=*> rollback;
ROLLBACK
testdb=>

So, our function above provides a proper pattern for updating value of existing members having the given
value.

Case 3.1: Deleting an existing member found by key

For this pattern pSQL/JSON has ready functionality

testdb=> UPDATE Tl SET J = J - 'meml' WHERE K = 1;

UPDATE 1

testdb=*> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K 1;
k | meml

___+ ______

1

(1 row)

testdb=*> ROLLBACK;

ROLLBACK

testdb=> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;
k | meml

testdb=*> ROLLBACK;
ROLLBACK

Case 3.2: Deleting all existing members found by given value
Example deleting member having value 123 on JSON without duplicates, K = 1:

testdb=> UPDATE Tl SET J = J -
(SELECT key FROM T1, jsonb_each(J::jsonb)

WHERE value = '123")
WHERE K = 1;
UPDATE 1

testdb=*> SELECT K, J -> 'meml' AS meml FROM Tl WHERE K = 1;

Page 38

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

k | meml
[
1

(1 row)

Trying to apply this to members of duplicate value, K= 2:

Testdb*> UPDATE Tl SET J = J -

(SELECT key FROM T1, jsonb each(J::jsonb)

WHERE value = '123"'")

WHERE K = 2;
ERROR: more than one row returned by a subgquery used as an expression
testdb=!> ROLLBACK;
ROLLBACK
testdb=>

To solve the issue, we modify a new version of the PL/pgSQL function “update_values_in_T1J” as follows

CREATE OR REPLACE FUNCTION
remove members_in T1J (doc_no integer,
givenvalue jsonb,
countlimit integer default 2147483647
) RETURNS void AS $$
DECLARE akey text;
BEGIN
FOR akey IN
SELECT * FROM
(SELECT key from
(SELECT (jsonb_each(J)).* FROM Tl WHERE K = doc_no) as dummyl
WHERE value = givenvalue
LIMIT countlimit) AS dummyl
ORDER BY key ASC
LOOP
UPDATE T1
SET J = J - akey
WHERE K = doc_no;
END LOOP;
RETURN;
END;
$$ LANGUAGE plpgsql;
COMMIT;

Experimenting with the JSON document without duplicates, K= 1

testdb=> SELECT remove members in T1J (1, '123'");
remove members in tlj

(1 row)

key | value

______ +___
mem2 | "123"

mem3 | true

mem4 | null

mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123]

mem6 | {"m61": 1, "mé62": "string", "m63": true, "m64": null, "me6e5": [2, 3], "meo6": {}}
(5 rows)

Experimenting with the JSON document of duplicates, K= 2

testdb=*> SELECT remove members in T1J (2, '123'");
remove members in tlj

Page 39

(1 row)

testdb=*> SELECT (jsonb_each(J)).* FROM Tl WHERE K = 2;

key | value

______ +___
mem2 | "123"

mem3 | true

mem4 | null

mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123]

mem6 | {"mé6l": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}
mem8 | "123"

(6 rows)

testdb=*> ROLLBACK;

ROLLBACK

testdb=>

So, this works on both cases, and is a working pattern for the case of “Deleting all existing members found by
given value”.

Accessing JSON arrays
Case 4: Adding a new element

For this pattern pSQL/JSON has ready functionality

testdb=> UPDATE T1

SET J = jsonb_set(J, '{mem5}', J->'mem5' || '124")

WHERE K = 1;

UPDATE 1

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k | mem5S

o

1| [123, "123", true, null, [1, 21, {}, 124]

(1 row)

testdb=*> ROLLBACK;
ROLLBACK

Case 5.1: Updating value of an existing element found by position

Using the simple path expression (mem5, 0} we access the first element in the array of member mem5

testdb=> UPDATE T1
SET J = jsonb _set(J, '{mem5,0}', '124")
WHERE K = 1;

UPDATE 1

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k| memb5

___+ ___

1| [124, "123", true, null, [1, 21, {}]

(1 row)

testdb=*> ROLLBACK;
ROLLBACK
testdb=>

Case 5.2: Updating value of all existing elements found by value
The JSON structure does not require element values in an array to be unique, so it is possible to have multiple

duplicate values in the same array. However, let’s start with the simple case assuming that there are no dupli-
cate values.

Page 40

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Trying to apply similar solution as Case 2.2 "Updating value of an existing members found by given value"
first applying the following "Updating value found by position" for the first element “123” of member memb5 to
the new value “124”:

testdb=> UPDATE T1
SET J = Jjsonb set(J,
concat (' {mem5, "',
(SELECT ordinality::integer -1 AS index
FROM T1, jsonb_array elements(J->'mem5'")
WITH ORDINALITY
WHERE value = '123"'), ' }'")::text[],
'124")
WHERE K = 1;
ERROR: malformed array literal: "{mem5, }"

DETAIL: Unexpected "}" character.
testdb=!> rollback;
ROLLBACK

Unfortunately, this has the same drawback as the one for Case 2.2; namely, it does not work when there is
more than one value to be updated.
It furthermore fails when there are no values to update.

testdb=> UPDATE T1
SET J = jsonb set(J,
concat (' {mem5, "',
(SELECT ordinality::integer -1 AS index
FROM T1, jsonb array elements(J->'mem5')
WITH ORDINALITY

WHERE wvalue = '125"), ' }'")::text([],
'124")
WHERE K = 1;
ERROR: malformed array literal: "{mem5, }"
DETAIL: Unexpected "}" character.
testdb=!> rollback;
ROLLBACK

Two solutions which avoid these limitations are presented. The first converts the JSONB array to an ordinary
PostgreSQL array, performs the deletion operation there, and then converts back to a JSONB array.

testdb=> UPDATE T1
SET J = jsonb_set(J,
'{mem5}"',
(SELECT array to json(
array replace (
array (SELECT jsonb_array elements((J->'mem5'))),

'123'::jsonb,
'124"'::jsonb))

FROM T1 WHERE K=1)::jsonb

WHERE K=1;
UPDATE 1
testdb=*> SELECT *
FROM (SELECT (jsonb each(J)).*
FROM T1
WHERE K=1) as dummy
WHERE key='memb5';

key | value

______ o
mem5 | [124, "123", true, null, [1, 2], {}]

(1 row)

So, this works, as well as applied to case of multiple duplicates in K=2

testdb=*> UPDATE T1
SET J = jsonb_set(J,
'{mem5}"',

Page 41

(SELECT array to_json(
array replace (
array (SELECT jsonb array elements((J->'mem5'))),
'123"'::jsonb,
'124"::jsonb))
FROM T1 WHERE K=2) ::jsonb

WHERE K=2;
UPDATE 1
testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)).*
FROM T1
WHERE K=2) as dummy
WHERE key='memb5';
key | value

[124, "123", "string", true, 124, 124, 124, null, [1, 2], {}, 124]

testdb=*> ROLLBACK;
ROLLBACK

The second solution employs a PL/pgSQL function, experimented with the duplicate elements in document of

K=2 as follows:

testdb=> CREATE OR REPLACE FUNCTION
replace in array of T1lJ (doc no integer,
jkey text,
jexpr jsonb,
newvalue jsonb,
countlimit integer default 2147483647)
RETURNS void AS $$%
DECLARE eposition integer;
BEGIN
FOR eposition IN
SELECT ordinality::integer
FROM T1, jsonb_array elements(J->jkey) WITH ORDINALITY
WHERE K=doc_no AND value = jexpr
LIMIT countlimit

LOOP
UPDATE T1
SET J = jsonb set(J, concat('{',6jkey,',',eposition-1,"}")::text[],
newvalue)
WHERE K = doc_no;
RAISE NOTICE 'Entry in position % of % replaced.', eposition, jkey;
END LOOP;
RETURN;

END;

$$ LANGUAGE plpgsql;
testdb=*> COMMIT;
COMMIT

testdb=> SELECT replace in array of T1J (1, 'mem5',6 '123','124"'");
NOTICE: Entry in position 1 of memb5 replaced.
replace in_array of tl1j

(1 row)

testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)) .*
FROM T1
WHERE K=1) as dummy
WHERE key='mem5';

key | value

______ +______________________________________
mem5 | [124, "123", true, null, [1, 2], {}]
(1 row)
testdb=*>

Page 42

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

SELECT replace in array of T1J (2, 'mem5',6 '123','124'");

SELECT *
FROM (SELECT (jsonb_each(J)).*
FROM T1

WHERE K=2) as dummy
WHERE key='mem5';

SELECT replace in_array of T1J (2, 'mem5','123','124',1);

SELECT K, J -> 'memb5' AS mem5 FROM T1 WHERE K = 2;

testdb=*> SELECT replace_in array of T1J (2, 'mem5',6 '123','124"');

NOTICE: Entry in position 1 of memb5 replaced.

NOTICE: Entry in position 5 of mem5 replaced.

NOTICE: Entry in position 11 of mem5 replaced.
replace_in_array of tl1j

(1 row)

testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)) .*
FROM T1
WHERE K=2) as dummy
WHERE key='mem5';

key | value

______ +__
mem5 | [124, "123", "string", true, 124, 124, 124, null, [1, 21, {}, 124]
(1 row)
testdb=*>

testdb=!> rollback;
ROLLBACK

The optional argument for count1imit limits the number of values which are replaced:

testdb=> SELECT replace in array of T1J (2, 'mem5', '123','124"',1);
NOTICE: Entry in position 1 of memb5 replaced.
replace in_array of tl1j

(1 row)

testdb=*> SELECT *
FROM (SELECT (jsonb_each(J)) .*
FROM T1
WHERE K=1) as dummy
WHERE key='mem5';

key | value

______ +___

mem5 | [124, "string", true, 123, null, [1, 2], {}, 123]

(1 row)
testdb=*>
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 2;

k| memb5
___+ ___
1| [123, "123", true, 123, 124, 124, null, [1, 2], {}, 123]

(1 row)

testdb=*> select remove from mem5 (2, '123");
NOTICE: Entry in position 1 of memb5 removed.
remove from mem5

Page 43

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 2;
k | mem5S

1| ["123", true, 123, 124, 124, null, [1, 2], {}, 123]
(1 row)

testdb=*>

testdb=!> ROLLBACK;
ROLLBACK

Case 6.1: Deleting an existing element found by position

For this pattern pSQL/JSON has ready functionality with which experiment by deleting the first ele-
ment (note: JSON arrays are O-indexed) from the array value of member mem5:

testdb=> UPDATE T1
SET J = Jjsonb_set(J, '{mem5}',

(J->'memb5') ::jsonb - 0)
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k | memb5
o
1 | ["123", true, null, [1, 2], {}]
(1 row)

testdb=*> rollback;
ROLLBACK
testdb=>

Case 6.2: Deleting all existing elements found by given value

Let’s start experimenting with the case of no duplicates, K=1
This is a tricky issue, for example if we try to delete the integer element 123

testdb=> UPDATE T1
SET J = jsonb set(J, '{mem5}',

(J->'memb5') ::jsonb - '123")
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k| memb
___+ ___
1| [123, "123", true, null, [1, 21, {}]
(1 row)

testdb=*> rollback;
ROLLBACK
testdb=>

Even if we did not get error message, this delete failed since value '123" in this context means a string value
while literal 123 is assumed to present an index value.
Next, we try filter solution to find the array index of the element to be deleted:

testdb=*> SELECT ordinality -1 AS index

FROM T1, Jjsonb array elements (J->'mem5') WITH ORDINALITY
WHERE value = '123';

index

Page 44

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

and embedding this to our UPDATE

testdb=*> UPDATE T1
SET J = jsonb_set(J, '{mem5}',
(J->'mem5"') : :jsonb -
(SELECT ordinality -1 AS index
FROM T1, jsonb array elements (J->'mem5') WITH ORDINALITY

WHERE value = '123"
) ::integer)

WHERE K = 1;

UPDATE 1

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k | memb5

o

1| ["123", true, null, [1, 2], {}]

(1 row)

testdb=*> ROLLBACK;
ROLLBACK
testdb=>

Voila, it worked! However, following solution is more general translating a JSONB array to a
PostgreSQL array and back

testdb=> UPDATE T1
SET J = jsonb set(J,
'{mem5}"',
(SELECT array to_json(
array remove (
array (SELECT jsonb_array elements((J->'mem5'))),
'123"::jsonb))
FROM T1 WHERE K=1)::jsonb

WHERE K=1;

UPDATE 1

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;
k | mem5

o

1 | ["123", true, null, [1, 2], {}]

(1 row)

testdb=*> rollback;
ROLLBACK
testdb=>

A proper pattern needs to work for documents with duplicate elements.
Here is one which is similar to the PL/pgsql solution for Case 5.2.

testdb=> CREATE OR REPLACE FUNCTION
remove from array of T1lJ (doc no integer,
jkey text,
jexpr Jjsonb,
countlimit integer default 2147483647)
RETURNS void AS $$
DECLARE eposition integer;
BEGIN
FOR eposition IN
SELECT ordinality::integer
FROM T1, jsonb array elements(J->jkey) WITH ORDINALITY
WHERE K=doc_no AND value = jexpr
ORDER BY ordinality DESC
LIMIT countlimit
LOOP
UPDATE T1
SET J = Jjsonb_set(J,

Page 45

concat ('{"',jkey,"}") ::text[],
(J->jkey) : :jsonb - (eposition-1))
WHERE K = doc_no;
RAISE NOTICE 'Entry in position % of % removed.', eposition, Jjkey;
END LOOP;
RETURN;
END;
$$ LANGUAGE plpgsql;
CREATE FUNCTION
testdb=*> COMMIT;
COMMIT
testdb=>

testdb=> SELECT remove from array of T1J (1, 'mem5',6'123'");

NOTICE: Entry in position 1 of mem5 removed.
remove from_array of tlj

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 1;

k| memb5
___+ _________________________________
1 | ["123", true, null, [1, 2], {}]
(1 row)

testdb=*> SELECT remove from array of T1J (2, 'mem5',6 '123");
NOTICE: Entry in position 11 of mem5 removed.
NOTICE: Entry in position 5 of mem5 removed.
NOTICE: Entry in position 1 of mem5 removed.
remove from array of tlj

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 2;

k| mem5
o .
2 | ["123", "string", true, 124, 124, null, [1, 2], {}]
(1 row)
testdb=*>

As for the function replace in array of T1Jfor Case 5.2, this function has an optional argument
which limits the number of replacements. Let’s first see the original contents and then apply the
function

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 2;

k| mem5

o
2 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123]
(1 row)

testdb=> SELECT remove from array of T1J (2, 'mem5',6'123',1);
NOTICE: Entry in position 11 of mem5 removed.
remove from_array of tlj

(1 row)

testdb=*> SELECT K, J -> 'memb5' AS mem5 FROM Tl WHERE K = 2;

k| mem5

e
2 | [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}]
(1 row)

testdb=*> rollback;

Page 46

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

ROLLBACK

Note: By the ORDER BY .. DESC the function removed the last matching element and changing the
order to ASC the function would remove the first matching element.

testdb=*> SELECT remove from array of T1J (2, 'mem5',6'123', 1);
NOTICE: Entry in position 1 of mem5 removed.
remove from array of tlj

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM Tl WHERE K = 2;

k | memb5

o
2 | ["123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]
(1 row)

testdb=*> rollback;
ROLLBACK

JSON manipulation experiments using SQL/JSON of MySQL/MariaDB

A brief history
Before entering the experiments with MySQL/MariaDB JSON, we’d like to look back in history and the
impact of MySQL on our DBTechLab tutorials for DBTechNet workshops. We do owe a lot to the works
of Open Source legends Linus Torvalds, Monty Widenius and Heikki Tuuri, who started their careers on
Helsinki area in the nineties. The Linux movement started by Linus, and Oracle’s VirtualBox platform
have enabled the cross university “laboratory” platform for our workshops and shared materials. In 99
Monty appeared in our workshop at Haaga-Helia on SQL-99 by Ocelot? praising his MySQL, a real “No
SQL” database of hobbyists at that time, on performance due to missing transaction processing facili-
ties, while he was in fact interested in hiring the Ocelot people. Soon MySQL was switched into a SQL
engine and its database engine was replaced by InnoDB engine of Heikki Tuuri to use transactions. After
Oracle acquired MySQL and InnoDB, Monty’s new team has continued development of the pure Open
Source version of MySQL code as MariaDB. It is great that both of these versions now continue on top of
the development of database technologies, including SQL/JSON.

Comparing JSON implementations of MySQL and MariaDB

A difference between MySQL and MariaDB is that while MySQL implements native JSON data type
defined in RFC 7159 (Petkovic, 2020). The JSON data type of MariaDB is just an alias name for LONG-
TEXT COLLATE utf8mb4_bin. However, the JSON alias includes automatically JSON_VALID function
as its CHECK constraint.

Following Table 1.1 of JSON functions has been built based on documentation on web sites of both
products. Marking by “Y” means “listed”, “y” found but not listed, while blank means that the func-
tion has not found in the documentation, so the list is not accurate and the function may be imple-
mented already but not yet documented, or may be implemented in future. This indicates the fast
development on the technology and versions.

Table 1.1 List of JSON functions in MySQL and/or MariaDB

4 Peter Gulutzan & Trudy Pelzer, the authors of the book “SQL-99 Complete, Really”

Page 47

JSON functions of MySQL MariaDB
JSON_ARRAY Y Y
JSON_ARRAY_AGG JSON_ARRAYAGG
JSON_ARRAY_APPEND Y
JSON_ARRAY_INSERT
JSON_ARRAY_INTERSECT
JSON_COMPACT
JSON_CONTAINS
JSON_CONTAINS_PATH
JSON_DEPTH
JSON_DETAILED
JSON_EQUALS
JSON_EXISTS
JSON_EXTRACT Y
JSON_INSERT
JSON_KEYS
JSON_KEY_VALUE
JSON_LENGTH
JSON_LOOSE
JSON_MERGE
JSON_MERGE_PATCH
JSON_MERGE_PRESERVE
JSON_NORMALIZE
JSON_OBJECT
JSON_OBJECT_AGG Y JSON_OBJECTAGG
JSON_OBJECT_FILTER_KEYS
JSON_OBJECT _TO_ARRAY
JSON_OVERLAPS Y
JSON_PRETTY
JSON_QUERY
JSON_QUOTE
JSON_REMOVE y
JSON_REPLACE
JSON_SEARCH
JSON_SET
JSON_TABLE
JSON_TYPE
JSON_UNQUOTE
JSON_VALID
JSON_VALUE
value MEMBER OF

< |=< |=<

<< |=<|<|<|=<|<|<|=<|<|<|<|<|<|<|=<|<|<|<|=<

<

<< |<x|<<|<x|<|< |« |<|=<|<|<|<|=<

< |<|=<|=<|=<|=<

The SQL/JISON experiments below are run using MariaDB 11.8.2 server on Windows 11 desktop.

Page 48

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Setting up the experiment

MariaDB [(none)]> use testdb
Database changed
MariaDB [testdb]>

USE Testdb;
DROP TABLE T1;

CREATE TABLE T1 (
K INT NOT NULL PRIMARY KEY,
J JSON) ;

-- Inserting our test documents
-- Note: in T-SQL/JSON key names need to be enclosed in double quotes!
START TRANSACTION;
DELETE FROM T1;
-- our basic document without duplicates
INSERT INTO T1 (K, J) VALUES
(1, '{
"meml":123,
"mem2":"123",
"mem3":true,
"mem4" :null,
"mem5": [123, "123", true, null, [1, 2], {} 1,
"mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }
Pty
-- document with duplicate keys and elements
INSERT INTO T1 (K, J) VALUES

(2, '{
"meml": 123,
"mem2": "123",
"mem3": true,
"mem4": null,
"mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 21, {}, 123 1,
"mem6": { "m6l":1, "m62":"123", "m63": true, "m64": null, "me6e5":[2, 3], "m66":{} },
"mem7": 123,
"mem8": "123"
Py
COMMIT;

-- Duplicate members?
INSERT INTO T1 (K, J) VALUES
(3, '"{ "meml":123, "meml":124 }"');

SELECT LEFT (K, 4) AS K, LEFT(JSON VALUE(J, '$.meml'), 4) AS meml
FROM Tl WHERE K=3;

MariaDB [testdb]> -- Duplicate members?
MariaDB [testdb]> INSERT INTO Tl (K, J) VALUES
-> (3, '"{ "meml":123, "meml":124 }"');

Query OK, 1 row affected (0.001 sec)

MariaDB [testdb]>
MariaDB [testdb]> SELECT LEFT (K, 4) AS K, LEFT(JSON_VALUE(J, 'S.meml'), 4) AS meml
-> FROM T1 WHERE K=3;

+-————- +-————- +
| K | meml |
Fo——— Fo——— +
| 3 | 123 |
+-————- +-————- +

1 row in set (0.000 sec)

Some querying models
Beside the SQL/JISON reporting functions, simple SELECT

MariaDB [testdb]> SELECT J FROM T1 WHERE K=1;

o
I {

"meml":123,

"mem2":"123",

"mem3":true,

"mem4":null,

"mem5": [123, "123", true, null, [1, 21, {} 1,

"mem6": { "m6l":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

b
o o

1 row in set (0.001 sec)

or pretty-print of JSON documents

MariaDB [testdb]> SELECT JSON PRETTY (J) FROM Tl WHERE K=1;

"meml": 123,
"mem2": "123",
"mem3": true,
"mem4": "new value",
"mem5" :
[

123,

"i23",

true,

null,

] 14

"mem6" :

{
"m6l": 1,
"m62": "123",
"m63": true,
"m64": null,
"m65" :

1 row in set (0.001 sec)

and following functions are available
JSON_KEYES ()

MariaDB [testdb]> SELECT JSON KEYS(J) FROM Tl WHERE K= 1;

o +
| JSON KEYS (J)

+o———= o +
| ["meml", "mem2", "mem3", "mem4", "mem5", "mem6"] |
o +

1 row in set (0.001 sec)

Page 50

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

JSON_EXTRACT ()

MariaDB [testdb]> SELECT JSON_EXTRACT (J, 'S$.mem5') FROM Tl WHERE K=1;

o +
| JSON_EXTRACT(J, 'S.mem5') |
Rt it +
| [123, "123", true, null, [1, 2], {}] |
e +

1 row in set (0.000 sec)

Accessing JSON objects
Case 1: Adding a new member on top level

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_SET(J, '$.mem7', 'new value')
-> WHERE K = 1;

Query OK, 1 row affected (0.001 sec)

Rows matched: 1 Changed: 1 Warnings: 0O

MariaDB [testdb]> --

MariaDB [testdb]> SELECT LEFT (JSON VALUE(J, '$.mem7'), 10) AS mem?’
-> FROM Tl WHERE K = 1;

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.001 sec)

Case 2.1: Updating value of an existing member found by key

a)
MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_SET(J, '$.mem4', 'new value')
-> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0O

MariaDB [testdb]> SELECT JSON EXTRACT (J, 'S$.mem4') AS mem4 FROM Tl WHERE K = 1;

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.014 sec)

b) as synonym of JSON_SET() MySQL and MariaDB have JSON_REPLACE()

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_REPLACE (J, 'S.mem4', 'new value')

Page 51

-> WHERE K = 1;
Query OK, 1 row affected (0.000 sec)
Rows matched: 1 Changed: 1 Warnings: O

MariaDB [testdb]> SELECT JSON EXTRACT (J, 'S$.mem4') AS mem4 FROM T1 WHERE K = 1;

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.001 sec)

Case 2.2: Updating value of all existing members found by given value

This “ALL operation” has proven to be difficult. As temporary solution we built the logic of the pat-
tern into following MariaDB SQL procedure tailored just for record K=1 in our table T1. Also writing
a more general-purpose procedure proved to be challenging and the generalization has now been
left out scope of our paper.

drop procedure UpdMembersOfGivenValue;
DELIMITER //
CREATE PROCEDURE UpdMembersOfGivenValue (
IN json_data JSON,
IN given value VARCHAR(255),
IN new_value VARCHAR (255))
BEGIN
DECLARE key name VARCHAR (255) ;
DECLARE value VARCHAR(255);
DECLARE path VARCHAR (255);
DECLARE idx INT DEFAULT O;
DECLARE total keys INT;
SET Qkeys = JSON KEYS(json data);
SET total keys = JSON_LENGTH (€@keys) ;
WHILE idx < total keys DO
SET keyiname = JSONiUNQUOTE(JSONiEXTRACT(@keyS, CONCAT ('S[', idx, '1"))):
SET path = CONCAT('S$.', key name);
SET value = JSON_VALUE (json_data, path);
CASE value
WHEN given value THEN
UPDATE T1
SET J = JSON SET (J, path, new value)
WHERE K = 1;
ELSE BEGIN END;
END CASE;
SET idx = idx + 1;
END WHILE;
END;
//
DELIMITER ;

Test run as follows

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL UpdMembersOfGivenValue(l, (SELECT J FROM Tl WHERE K=1), 123, 127);

Page 52

null,
true,

"mem5" :
"m64":

draft 2025-12-29 ML, SJH, FL, KS

[123,
null,

EPELS
"m65" :

true,
[2, 31,

DBTechLab SQL/JSON on RDBMS Databases
fomm fom e fomm - +
| path | given value | value |
fomm fom e fom— +
| $.mem2 | 123 | 123 |
fomm fom - fomm - +
1 row in set (0.004 sec)
Query OK, 2 rows affected (0.006 sec)
MariaDB [testdb]> SELECT * FROM Tl WHERE K=1;
o
| K| J
o
|1 | {"meml": "127", "mem2": "127", "mem3": true, "mem4":
null, [1, 21, {}], "mem6": {"m61": 1, "m62": "123", "m63":
"m66": {}}} |
o
1 row in set (0.000 sec)
MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.000 sec)
Case 3.1: Deleting an existing member found by key
MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)
MariaDB [testdb]> UPDATE Tl SET J = JSON_REMOVE(J, 'S.meml"')
-> WHERE K=1;
Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0O

MariaDB [testdb]> SELECT JSON KEYS(J) FROM Tl WHERE K= 1;
o o +

| JSON KEYS (J) |

+-——— e +

| ["mem2", "mem3", "mem4", "mem5", "mem6"] |

o +

1 row in set (0.000 sec)

MariaDB [testdb]> SELECT LEFT(JSON7VALUE(J, 'S.meml'), 10)
-> FROM T1 WHERE K=1;

+-————— +

| meml |

o +

| NULL |

+-————- +

1 row in set (0.000 sec)

MariaDB
Query OK,

[testdb]> ROLLBACK;
0 rows affected (0.013 sec)

Case 3.2: Deleting all existing members found by given value

Solved by modification from Case 2.2 solution

drop procedure DelMembersOfGivenValue;
DELIMITER //
CREATE PROCEDURE DelMembersOfGivenValue (
IN json_data JSON,
IN given value VARCHAR(255),
IN new value VARCHAR (255))
BEGIN
DECLARE key name VARCHAR(255);

AS meml

Page 53

DECLARE value VARCHAR(255);
DECLARE path VARCHAR (255);
DECLARE idx INT DEFAULT O0;
DECLARE total keys INT;
SET @keys = JSON_KEYS(json_data);
SET total keys = JSON_LENGTH (QRkeys) ;
WHILE idx < total keys DO
SET key name = JSON_UNQUOTE (JSON_EXTRACT (Qkeys, CONCAT ('S$["', idx, '1")));
SET path = CONCAT('$.', key name);
SET value = JSON VALUE (json data, path);
CASE value
WHEN given value THEN
SELECT path, given value, value;
UPDATE T1
SET J = JSON_REMOVE (J, path)
WHERE K = 1;
ELSE BEGIN END;
END CASE;
SET idx = idx + 1;
END WHILE;
END;
//
DELIMITER ;

START TRANSACTION;

CALL DelMembersOfGivenValue ((SELECT J FROM T1 WHERE K=1), 123, 127);
SELECT * FROM T1 WHERE K=1;

ROLLBACK;

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL DelMembersOfGivenValue ((SELECT J FROM T1 WHERE K=1), 123, 127);
to—m - Hommmm - oo m - +

| path | given value | value |
Fo—————— o SR fo————— +
| $.meml | 123 | 123 |
fo—— fom Fo———— +
1 row in set (0.001 sec)
fo—— fom Fo———— +
| path | given value | value |
Fo—————— o S fo————— +
| $.mem2 | 123 | 123 |
fo—— fom o +
)

Query OK, 2 rows affected (0.004 sec)

MariaDB [testdb]> SELECT * FROM Tl WHERE K=1;

| 1 | {"mem3": true, "mem4": null, "mem5": [123, "123", true, null, [1, 2], {}], "memé6":
{"m6el": 1, "m62": "123", "m63": true, "m64": null, "mé65": [2, 3], "m66": {}}} |

ettt ittt it ittt
1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.001 sec)

Accessing JSON arrays
Case 4: Adding a new element into an array

Petkovic (2020) reports of following MySQL functions for inserting new element into a JSON array

Page 54

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

a) toinsert new value in given position
JSON_ARRAY INSERT (jdoc, ‘$.member[position]’, “value”)

b) to append the new value at the end of the array
JSON_ARRAY APPEND (jdoc, ‘$.member’, “newvalue”)

In following we apply these to our MariaDB basic document

a)

START TRANSACTION;

UPDATE T1

SET J = JSON_ARRAY INSERT(J, 'S$.mem5[6]', 6)

WHERE K = 1;
SELECT JSON_EXTRACT (J, '$.mem5') AS mem5 FROM T1 WHERE K=1;
ROLLBACK;

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_ARRAY INSERT (J, 'S.mem5[6]"', 6)
-> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON EXTRACT (J, 'S$.mem5') AS mem5 FROM T1 WHERE K=1;

o +
| mem5 |
e +
| [123, "123", true, null, [1, 21, {}, 61 |
e +

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.013 sec)

b)
START TRANSACTION;
UPDATE T1

SET J = JSON_ARRAY APPEND(J, '$.mem5', 5)

WHERE K = 1;

SELECT JSON_ EXTRACT (J, '$.mem5') AS mem5 FROM T1 WHERE K=1;
ROLLBACK;

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_ ARRAY APPEND(J, 'S.mem5', 5)
-> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, 'S$.mem5') AS mem5 FROM T1 WHERE K=1;

e +
| memb5 |
- +
| [123, "123", true, null, [1, 2], {}, 51 |
T e +

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.001 sec)

Case 5.1: Updating value of an existing element found by position

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

Page 55

MariaDB [testdb]> UPDATE T1

-> SET J = JSON_SET(J, 'S$.mem5[1]', "125")
-> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)
Rows matched: 1 Changed: 1 Warnings: 0O

MariaDB [testdb]> SELECT JSON_EXTRACT (J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

| [123, "125", true, null, [1, 2], {}] |

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.000 sec)

Case 5.2: Updating value of all existing elements found by value

We have not found direct functions for this pattern, but MariaDB’s stored procedure language provides means
for implementing the needed logic steps as follows. The code contains temporary indented “select” state-
ments for tracing the steps.

drop procedure UpdElementsOfGivenValue;
DELIMITER //
CREATE PROCEDURE UpdElementsOfGivenValue (

IN json data JSON,

IN member key VARCHAR(255),
IN given value VARCHAR(255),
IN new_value VARCHAR (255))

BEGIN

END;
//

DECLARE value VARCHAR(255);
DECLARE path VARCHAR (255) ;
DECLARE array VARCHAR(255);
DECLARE idx INT DEFAULT O;
DECLARE total elems INT;
SET path = CONCAT ('$.', member key, '[*]');
select path;
SET array = JSON_EXTRACT (json_data, path);
select array;
SET total elems = JSON LENGTH(array); -- ?
select total elems;
-- Loop through each key
WHILE idx < total elems DO
SET path = CONCAT('S$.', member key, '[', idx, ']') ;
SET value = JSON_EXTRACT (json_data, path);
CASE value
WHEN given_ value THEN
select path, given value, value;
UPDATE T1
SET J = JSON _SET (J, path, new value)
WHERE K = 1;
ELSE BEGIN END;
END CASE;
SET idx = idx + 1;
END WHILE;

DELIMITER ;

START TRANSACTION;

CALL UpdElementsOfGivenValue ((SELECT J FROM T1 WHERE K=1), 'mem5', 123,
SELECT * FROM T1 WHERE K=1;

ROLLBACK;

Case 6.1: Deleting an existing element found by position

127);

Page 56

DBTechlLab SQL/JSON on RDBMS Databases

JSON_REMOVE() works also for array elements

MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1
-> SET J = JSON_REMOVE (J, 'S.mem5[1]")
-> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0O

draft 2025-12-29 ML, SJH, FL, KS

MariaDB [testdb]> SELECT JSON_EXTRACT (J, '$.mem5') AS mem5 FROM Tl WHERE K=1;

B T +
| mem5 |
e +
| [123, true, null, [1, 2], {}] |
e +

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.014 sec)

Case 6.2: Deleting all existing elements found by given value

Modifying new version from the stored procedure of pattern 5.2 the implementation of this pattern

was a quite simple task

drop procedure DelElementsOfGivenValue;
DELIMITER //
CREATE PROCEDURE DelElementsOfGivenValue (
IN json data JSON,
IN member key VARCHAR(255),
IN given value VARCHAR(255),
IN new value VARCHAR (255))
BEGIN
DECLARE value VARCHAR(255);
DECLARE path VARCHAR (255);
DECLARE array VARCHAR(255) ;
DECLARE idx INT DEFAULT O;
DECLARE total elems INT;

SET path = CONCAT('$.', member key, '[*]');
SET array = JSON_EXTRACT (json_data, path);
SET total elems = JSON_ LENGTH (array); -- ?
WHILE idx < total elems DO
SET path = CONCAT('$.', member key, '[', idx, ']'")

SET value = JSON_EXTRACT (json_data, path);
CASE value
WHEN given_ value THEN
UPDATE T1
SET J = JSON_REMOVE (J, path)
WHERE K = 1;
ELSE BEGIN END;
END CASE;
SET idx = idx + 1;
END WHILE;
END;
//
DELIMITER ;

START TRANSACTION;
CALL DelElementsOfGivenValue ((SELECT J FROM T1 WHERE K=1),

SELECT * FROM T1 WHERE K=1;
ROLLBACK;

Test run

MariaDB [testdb]> DELIMITER ;

’

'mem5"',

123,

127);

Page 57

MariaDB [testdb]>
MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL DelElementsOfGivenValue ((SELECT J FROM Tl WHERE K=1), 'mem5',6 123,
127);
Query OK, 1 row affected (0.001 sec)

MariaDB [testdb]> SELECT * FROM Tl WHERE K=1;

B e et e et et it
| K| J

o
| 1T | {"meml": 123, "mem2": "123", "mem3": true, "mem4": null, "mem5": ["123", true, null, [1,
21, {}1, "mem6": {"m6l": 1, "m62": "123", "m63": true, "m64": null, "me5": [2, 3], "meo6": {}}}
|

Bt e it T ettt it

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.000 sec)

Summary

A difference between MySQL and MariaDB is that while MySQL implements true JSON data type, The
JSON data type of MariaDB is just an alias name for LONGTEXT COLLATE utf8mb4_bin. However, the
JSON alias includes automatically JSON_VALID function as its CHECK constraint.

On duplicate keys of object members MariaDB documentation says that only the first key-value will
be effective, as we tested above.

Filter expressions of SQL/JSON proposal are not implemented in MySQL/MariaDB.

Compared with the JSON UPDATE implementations in other DBMS products, the remove operation
of members or elements of Oracle and MySQL/MariaDB are the best implementations.

The list of JSON functions of MySQL and MariaDB provides topics for many study reports!

On UNIQUE KEYS requirement of JSON members

The JSON Data Structure model which we presented in the beginning of this tutorial assumes that
member names (i.e. keys) are unique inside every JSON object. According to IETF JSON specification
RFC 8259 Dec 2017 “The names within an object SHOULD be unique” and continues “.. When the
names within an object are not unique, the behavior of software that receives such an object is un-
predictable.” However, the RFC does not deny possibility of non-unique keys of object members,
and we need to remember that JSON structures in general are applied for data interfacing between
systems.

The possibility of non-unique keys has however consequences apart from software that is not able
to process the JSON content properly:

(1) It is not possible to identify a single member if two or more members have the same key on the
same structural level, for example: { "key1":val, "keyl":val }. Because the JSON object is unordered,
we cannot refer to the “first” or “second” member. However, it is possible to have the same key
name on different levels of the JSON object like { "key1": { "key1":vall } }.

(2) The access and processing software has to deal with two possibilities, either the access addresses
one single element or it receives an unordered collection of elements. In the latter case the collec-
tion may only be processed as a whole in order to yield deterministic results. In the extreme case the

Page 58

https://archive.org/details/rfc8259

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

consequences are that the JSON object can only be handled as a string which would make the JSON
extension of SQL obsolete.

Applying JSON technology as storage structure in databases has special constraint requirements for
this uniqueness case. In the context of database structures the statement needs to be changed into
form “The key names within an object NEED to be unique”. SQL/JSON extends the relational model
into new hybrid model, which needs to be implemented preserving the strict constraint rules, trans-
action and security service, and preventing “unpredictable behavior” on data.

Considering the reasoning above, it is strange that the SQL professionals in ANSI SQL WG3 have
ended up in SQL/JSON proposal Part 2 to present the options of WITH or WITHOUT UNIQUE KEYS®
clauses to the SQL extension, and even worse: “Since enforcing a constraint is costly, the default is
not to check, thatis, T.CIS JSON is equivalent to T.C IS JSON WITHOUT UNIQUE KEYS”. In this quote,
the T.C stands for column C in table T, examples used in the SQL/JSON proposal Part 2 paper.

One might argue, that the “WITH UNIQUE KEYS” clause would prevent some external JSON files with
duplicate members from loading to the database, but this is not a reason to break the consistency of
data in the database. We need to understand that the context for JSON in databases is more de-
manding than for JSON files in general. The duplicate members in external JSON files need to be
taken care by the loading interface.

For debating on the issue, we have conducted following series of tests trying to create duplicate
members on top level of a JSON document and testing how JSON queries behave on accessing these.
The tests below show that SQL/JSON implementations at least in current versions of Db2 and Oracle
are built according the UNIQUE KEYS model of JSON members, but other tested RDBMS products
seem to behave differently and will not support the “WITH UNIQUE KEYS” clause, but for PostgreSQL
a workaround has been found:

Db2 for LUW:

Db2 for LUW version 12,1,1 does not recognize the CHECK constraint “IS JSON WITH UNIQUE KEYS” for BLOB-
typed JSON column.

-- Duplicate object members test:

INSERT INTO T1 (K, J) VALUES

(3, JSON_TO BSON (' { "duplica":"First", "duplica":"Second", "duplica":"Third", "du-
plica":"Last"}'));

db2 => INSERT INTO Tl (K, J) VALUES

db2 (cont.) => (3, JSON_TO BSON (' { "duplica":"First", "duplica":"Second", "du-
plica":"Third","duplica":"Last"}"'));

DB21034E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:

SQL16406N JSON data has non-unique keys.

db2 =>

Fine, but by accident we have found the article “JSON - Uniqueness controls for key names” at
https://www.ibm.com/support/pages/json-unigueness-controls-key-names (on Db2 for i system) say-
ing that the WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS clause has been added to the JSON pub-
lishing functions. Even worse — “JSON behavior is changed to default to allowing duplicate key names
within JSON documents”. This is worrying - do the (young ?) implementers of ‘Db2 for i’ believe that
the SQL/SQL specification needs to be implemented without critics, even on risk of breaking the in-
tegrity of Db2.

5 See the “IS JSON” map of implementations in RDBMS products by Markus Winand

Page 59

https://www.ibm.com/support/pages/json-uniqueness-controls-key-names

Oracle 23ai:

Oracle recommends using the CHECK constraint “IS JSON WITH UNIQUE KEYS” for text-based JSON columns to
avoid inconsistent contents. However, this constraint is automatically included for column based on Oracle’s
native JSON data type, which we are using.

-- Duplicate object members test:
INSERT INTO T1 (K, J) VALUES
(3, '"{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}");

SQL> -- Duplicate object members test:
SQL> INSERT INTO T1 (K, J) VALUES
2* (3, '"{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}"');
Error starting at line : 1 in command -
INSERT INTO T1 (K, J) VALUES
(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}")
Error at Command Line : 1 Column : 13

Error report -

SQL Error: ORA-40473: duplicate key names 'duplica' in JSON object
JZN-00007: Object member key 'duplica' is not unique

Help: https://docs.oracle.com/error-help/db/ora-40473/

40473. 00000 - "duplicate key names '%s' in JSON object"

*Cause: The provided JavaScript Object Notation (JSON) data had duplicate
key names in one object.

*Action: Provide JSON data with unique key names in each JSON object.

SQL Server XE

SQL Server XE does not recognize the constraint IS JSON WITH UNIQUE KEYS. Let’s test what happens when
we enter JSON document having duplicate member keys:

-- Duplicate object members test:

BEGIN TRANSACTION;

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}'");
(1 row affected)

SELECT LEFT (K, 4) AS K, JSON VALUE (J, '$.duplica') AS Duplica
FROM T1 WHERE K=3;
K Duplica

3 First
(1 row affected)

-- But let’s see them all
SELECT J FROM T1 WHERE K=3;

{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}
(1 row affected)

-- How about others if the “First” gets removed
UPDATE T1 SET J = JSON MODIFY (J, 'S$S.duplica', NULL) WHERE K=3;
(1 row affected)

SELECT LEFT (K, 4) AS K, JSON_VALUE(J, '$.duplica') AS Duplica
FROM T1 WHERE K=3;

K Duplica

3 Second

(1 row affected)

-— OK, let’s see them all
SELECT J FROM T1 WHERE K=3;
J

Page 60

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

{ "duplica":"Second", "duplica":"Third","duplica":"Last"}
(1 row affected)

ROLLBACK;

Duplicate keys cannot be prevented in SQL Server, the "WITH UNIQUE KEYS" clause has not been im-
plemented yet.

PostgreSQL

Using the following script, we experiment how duplicate object members behave in a PostgreSQL
transaction

BEGIN;

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}"');
(SELECT J FROM T1 WHERE K=3);

SELECT J->'duplica' AS Duplica FROM Tl WHERE K=3;
(SELECT (JSONB_EACH(J)).* FROM T1 WHERE K=3);

-- How about if the First gets removed

UPDATE T1 SET J = J - 'duplica' WHERE K=3;

SELECT J->'duplica' AS Duplica FROM Tl WHERE K=3;
-- Who are hiding behind?

(SELECT (JSONBiEACH(J)).* FROM T1 WHERE K=3);
(SELECT J FROM T1 WHERE K=3);

ROLLBACK;

Now, applying the script step by step we get following results

testdb=> BEGIN;

BEGIN

testdb=> INSERT INTO T1 (K, J) VALUES

(3, '"{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}"');
INSERT 0 1

testdb=*> (SELECT J FROM T1 WHERE K=3);

{"duplica": "Last"}
(1 row)

testdb=> SELECT J->'duplica' AS Duplica FROM T1 WHERE K=3;
duplica

"Last"
(1 row)

This shows that in PostgreSQL the last duplicate is the only one stored, while others are removed.
So, the Last is also the “First”

testdb=> -- How about if the First gets removed

testdb=> UPDATE Tl SET J = J - 'duplica' WHERE K=3;

UPDATE 1

testdb=> SELECT J->'duplica' AS Duplica FROM Tl WHERE K=3;
duplica

(1 row)

testdb=> (SELECT (JSONB_EACH (J)) .* FROM Tl WHERE K=3);
key | value

testdb=> (SELECT J FROM Tl WHERE K=3);

Page 61

J
{}

(1 row)

testdb=> ROLLBACK;
ROLLBACK

Even after we remove the effective duplicate, the other duplicates remain unavailable in the same
transaction! Reason to this is that on JSONB typed column the last duplica wins while others are removed
automatically without warnings. Is this the service we want? Note that we will silently loose the information
in value parts of those automatically deleted members due to accidently having same key names!

Current version of PostgreSQL support WITH UNIQUE KEYS constraint clause only for the publishing function
JSON_OBJECT().

For JSON column in CREATE TABLE command the UNIQUE KEYS constraint can be created as PL/pgSQL function
to be used in CHECK constraint of the JSON column (solution found by Bing, but source unknown):

CREATE OR REPLACE FUNCTION unique keys(js json)
RETURNS boolean LANGUAGE plpgsgl IMMUTABLE AS $$
DECLARE
keys text[];
BEGIN
-- Extract keys
SELECT array_agg (key) INTO keys
FROM json_each(Jjs);
-- Compare array length with distinct length
RETURN array length (keys, 1) = (
SELECT count (DISTINCT k) FROM unnest (keys) AS k
)i
END;
$S7

CREATE TABLE T (

K SERIAL PRIMARY KEY,

J JSONB NOT NULL,

CONSTRAINT with unique keys CHECK (unique keys (J))
)i

The big difference between these UNIQUE KEYS protection is that while the just trusting on the silent JSONB
automatic deletion of first duplicas, the alternative of CONSTRAINT prevention from duplicate keys will generate
error message and abort the whole PostgreSQL transaction, but this the right solution!.

MariaDB

MariaDB does not recognize the constraint IS JSON WITH UNIQUE KEYS. Let’s test what happens when we
enter JSON document having duplicate member keys:

MariaDB [testdb]> -- Duplicate object members test:
MariaDB [testdb]> START TRANSACTION;
Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> INSERT INTO Tl (K, J) VALUES
-> (3, '"{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}'");
Query OK, 1 row affected (0.000 sec)

MariaDB [testdb]> SELECT LEFT (K, 4) AS K, JSON VALUE(J, 'S$.duplica') AS Duplica
-> FROM T1 WHERE K=3;

o= tomm e +

| K | Duplica |

fom——— fomm +

Page 62

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

| 3 | First |
fom——— fomm - +
1 row in set (0.000 sec)

MariaDB [testdb]> -- But, let’s see them all

MariaDB [testdb]> SELECT J FROM T1l WHERE K=3;

o +
| J |
B et ettt e e +
| { "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"} |
e +

1 row in set (0.000 sec)

MariaDB [testdb]> -- How about others if the “First” gets removed

MariaDB [testdb]> UPDATE Tl SET J = JSON_REMOVE(J, '$.duplica') WHERE K=3;
Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0O

MariaDB [testdb]> SELECT LEFT (K, 4) AS K, JSON_VALUE (J, '$.duplica') AS Duplica
-> FROM T1 WHERE K=3;
o e +
| Duplica |
+-————- - +
| Second |
fom +
1 row in set (0.000 sec)

MariaDB [testdb]> -- OK, let’s see them all

MariaDB [testdb]> SELECT J FROM T1 WHERE K=3;

Bt ittt e L e +
[J |
B ittt e it e TP e +
| {"duplica": "Second", "duplica": "Third", "duplica": "Last"} |
o +

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;
Query OK, 0 rows affected (0.001 sec)

The current MariaDB version does not support WITH UNIQUE KEYS clause.

Summary — A Critique of SQL/JSON

In the Abstract of ANSI SQL WG3 in SQL/JSON Part 1 proposal the WG3 says “It is important that SQL
respond to the requirement to support JSON data by providing facilities for storage, retrieval, query-
ing, and manipulation of JSON data in the context of SQL”. In 1.1.8.3 “Updating JSON data” the WG3
says on updating mechanisms “..is beyond the scope of the present proposal and may be addressed
in some future proposal”.

Postponing the updating part of SQL/JSON standard, criticised also by Petkovic (2020), has led to
“Babel effect” messing among the JSON implementations, which we have seen in our experiments
on various RDBMS products on solutions for the technical update patterns of the JSON data model.
Some solutions are now quite complicated, and we welcome ideas for better solutions.

While even some parts of the SQL/JSON standard have not yet been implemented in all mainstream
RDBMS products, some maintenance functions seem to become popular. Also, even late introduc-
tion of language standardisation is not a catastrophe, as proven by PostgreSQL adaption of
SQL/JSON functions alongside their earlier JSON query implementation. So, we have reason to ex-
pect SQL/JSON 2.0 (?) standard, to be extended by JSON data manipulation language part.

Page 63

Acknowledgements

We thank prof. Stephen J. Hegner on his PostgreSQL PL/pgSQL examples, observations and solutions on JSON
structure manipulation. In fact, much of this tutorial is credit to him.

We thank also Mark Gillis at Triton Consulting UK on Db2 advice, Timo Leppadnen at Oracle Finland on Oracle
23ai information, and Tim Hall at ORACLE-BASE on Oracle-Relational Duality examples.

References

Baklarz G., Bird P., "Db2 Version 11 JSON Highlights", 2019, Db2V11-JSON-ebook.pdf at
https://ibm.ent.box.com/s/g6gxnq9l3se03vgjkcrp27f68c7bxpur

ECMA, “The JSON Data Format”, Standard ECMA-404, 2013, https://ecma-international.org/wp-content/up-
loads/ECMA-404_1st_edition_october_2013.pdf

Gillis M., "Messing with JSON data in Db2", 2023, https://www.triton.co.uk/messing-with-json-data-in-db2/

Gugnani S., et al. “JSON Relational Duality: A Revolutionary Combination of Document, Object, and Relational
Models”, SIGMOD 2025, https://dl.acm.org/doi/pdf/10.1145/3722212.3724441

Hall T., “JSON_TRANSFORM in Oracle Database 21c”, at https://oracle-base.com/articles/21c/json_transform-
21c

IETF, “The JavaScript Object Notation (JSON) Data Interchange Format”, Dec 2017, RFC 8259 at
https://www.rfc-editor.org/rfc/rfc8259

ISO/IEC, “Part 6: Support for JSON”, iTeh STANDARD PREVIEW at https://cdn.standards.iteh.ai/sam-
ples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf

ISO, “Part 8: Specification of JavaScript Object Notation Encoding Rulers” at ISO Online Browsing Platform
(OBP) at https://www.iso.org/obp/ui#iso:std:iso-iec:8825:-8:ed-2:v1:en:term:3.7.7

JSON.org, “Introducing JSON”, https://www.json.org/json-en.html

JSON.org, “The application/json Media Type for JavaScript Object Notation (JSON)”, RFC 4627

Liu Z. H., et al., “Closing the functional and Performance Gap between SQL and NoSQL”, SIGMOD 2016,
https://dl.acm.org/doi/pdf/10.1145/2882903.2903731

Liu Z. H., et al., “Native JSON Datatype Support: Maturing SQL and NoSQL convergence in Oracle Database”,
Proceedings of VLDB, Vol 13 No 12, 2020, https://dl.acm.org/doi/10.14778/3415478.3415534

Melton J, et al., "ANSI SQL/JSON: part 1", Mar 4 2014, at
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf

NEON, “PostgreSQL JSON”, PostgreSQL Tutorial at https://neon.com/postgresql/postgresql-tutorial/post-
gresql-json

NEON, “PostgreSQL JSON Extract”, https://neon.com/postgresql/postgresql-json-functions/postgresql-json-
extract

NEON, “PostgreSQL JSON Path”, https://neon.com/postgresql/postgresql-json-functions/postgresql-json-path
Oracle Help Center, “11 Oracle SQL Function JSON_TRANSFORM”, JSON Developer’s Guide, at

https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_trans-
form.html

Page 64

https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://dl.acm.org/doi/pdf/10.1145/3722212.3724441
https://oracle-base.com/articles/21c/json_transform-21c
https://oracle-base.com/articles/21c/json_transform-21c
https://cdn.standards.iteh.ai/samples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf
https://cdn.standards.iteh.ai/samples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf
https://www.json.org/json-en.html
https://dl.acm.org/doi/pdf/10.1145/2882903.2903731
https://dl.acm.org/doi/10.14778/3415478.3415534
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://neon.com/postgresql/postgresql-tutorial/postgresql-json
https://neon.com/postgresql/postgresql-tutorial/postgresql-json
https://neon.com/postgresql/postgresql-json-functions/postgresql-json-extract
https://neon.com/postgresql/postgresql-json-functions/postgresql-json-extract
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_transform.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_transform.html

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Oracle Help Center, “17.2 SQL/JSON Path Expression Syntax”, JSON Developer’s Guide, at
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/sql-json-path-expression-syn-
tax.html|#GUID-AEBAD813-99AB-418A-93AB-F96BC1658618

Petkovic D., “Implementation of JSON Update Framework in RDBMSs“, Feb 2020, at
https://www.researchgate.net/publication/339331359_Implementation_of JSON_Update_Frame-
work_in_RDBMSs,

Petkovic D., “SQL/JSON Standard: Properties and Deficiencies”, Oct 24 2017, at
https://www.researchgate.net/publication/320594498 SQLISON_Standard_Properties_and_Deficiencies

PostgreSQL.org, “9.16. JSON Functions and Operators”, 2025, at https://www.postgresgl.org/docs/cur-
rent/functions-json.html

PostgreSQL.org, “Chapter 41. PL/pgSQL - SQL Procedural Language”, 2025, at https://www.post-
gresql.org/docs/17/plpgsql.html

Zemke F, et al., "SQL/JSON: part 2 - Querying JSON", Mar 4 2014, at
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf
Wikipedia, “JSON” at https://en.wikipedia.org/wiki/JSON

Wikipedia, “PostgreSQL” at https://en.wikipedia.org/wiki/PostgreSQL

Winand M., “A Lot Has Changed Since SQL-92” see the map of IS JSON implementations in RDBMS products, at
https://modern-sgl.com/caniuse/is-json

DataCamp, “PostgreSQL Querying & Filtering JSON Fields” at https://www.datacamp.com/doc/postgresql/que-
rying-&-filtering-json-fields

* ok k

We have covered related issues also in some of our earlier DBTechNet papers:

Laiho M., “Getting Started with DBTechLab VM”, 2024
- RDBMSs, open source programming languages and tools

Laiho M., Laux F., et al., “SQL Transactions” — Theory and hands-on exercises, 2012,
at https://dbtechnet.org/documents/?dir=67
- basics of SQL transaction, language versions

Laiho M., Laux F., et al. “SQL Stored Routines”, 2016
- Db2 stored procedures, etc

Laiho M., Kurki M., et al. “Introduction to Transaction Programming”, 2019

. data access APls and transaction protocols

Laiho M., “MongoDB Transactions”, 2025
- Native JSON database

Laiho M., Laux F., et al. “XML, SQL/XML and the Big Three”, 2011
- XPath expressions

Page 65

https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-json.html
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/PostgreSQL
https://www.datacamp.com/doc/postgresql/querying-&-filtering-json-fields
https://www.datacamp.com/doc/postgresql/querying-&-filtering-json-fields
https://drive.google.com/file/d/1JuRdWO_UcrzJm_2q3cdapNqW69_1WvO4/view?usp=sharing
https://dbtechnet.org/documents/?dir=67
https://drive.google.com/file/d/195JHQUONAi2umFdDIswA3CD1NQ3_KQjp/view?usp=sharing
https://drive.google.com/file/d/1baFtZbxHMpzkCOeVRBbqs_-YlQbxFxk_/view?usp=sharing
https://drive.google.com/file/d/1cp0v04Vc24HFiBp6hrF4DLlLKCyup-vs/view?usp=drive_link
https://drive.google.com/file/d/191LxEQpKOFvK7AC7-FdMo8ssCC3hb8FP/view?usp=drive_link

Index

array, 3

binary, 15, 32

cast, 15

cast operator, 32

CTE, 30

duplicate, 3

element, 3

escaped characters, 2
extract operator, 33
extract operators, 32
field, 3

Filter expressions, 15
IS JSON WITH UNIQUE KEYS, 59
IS JSON WITHOUT UNIQUE KEY, 59
JSON document, 3
JSON_TRANSFORM, 15
JSONB, 32

key/value pair, 3
literal, 2

member, 3
name/value pair, 3

nestable, 2

number, 2

numeric, 15

object, 3

OPENIJSON, 25

OSON, 15

path, 25

path expression, 4, 15, 32
PL/pgSQL, 36, 38, 42
pretty print, 33
property, 3

scalar, 2

string, 2

type cast, 32
type-sensitive, 32
unique, 3

UNIQUE KEYS, 58
UNIQUE KEYS model, 59
WITH clause, 25

WITH UNIQUE KEYS, 59

Page 66

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Appendix 2 Counting number of object members on top level?

For the algorithm of updating values or removing ALL members found by value, browsing [0..max] of the JSON
member list in Cases 2.2, 3.2, etc. in the Appendix 1, we need to sort out the count of members and elements.
In fact, Db2 SQL/JSON is the only one for which we have not yet found general solution for these ALL cases.
The solutions of the other RDBMS systems present interesting variations for this simple topic.

Db2 for LUW

This can be solved based on the JSON_KEYS function which we have implemented as external stored proce-
dure written in C language, see Appendix 3.

Oracle 23ai

SQL> SELECT MAX (idx) AS count members
2 FROM (SELECT jt.idx
3 FROM T1,
4 JSON_TABLE (J, 'SLox!
5 COLUMNS (
6 idx FOR ORDINALITY
7)
8) Jt
9* WHERE T1.K=1);

COUNT_MEMBERS

6

SQL Server

DECLARE @json VARCHAR(1000)

SELECT @json=J FROM Tl WHERE K= 1;
SELECT COUNT (*) AS MemberCount
FROM OPENJSON (@json) ;

MemberCount

(1 row affected)

PostgreSQL

testdb=> SELECT jsonb object keys(J)
FROM T1 WHERE K=1;

jsonb_object keys

meml

mem2

mem3

mem4

memb5

memé

(6 rows)

testdb=> SELECT COUNT (*) FROM
(SELECT jsonb object keys (J)
FROM T1 WHERE K=1);

count

Page 67

(1 row)

MariaDB:

MariaDB [testdb]> SELECT K, JSON LENGTH(J) AS count members
-> FROM T1 WHERE K=1;

fom +
| K | count members |
Fo— b S +
[1 6

B e ettt e L T +

1 row in set (0.009 sec)

Appendix 3 Implementing JSON_KEYS function to Db2 for LUW?

JSON_KEYS function is not included in SQL/JSON standard, but It has been implemented in MySQL/MariaDB,
PostgreSQL, and some DBMS products outside our JSON experiments. Sean Stuber reports on his PL/SQL func-
tion for listing the keys in Oracle SQL/JSON. In SQL Server a solution can be based on OPENJSON function.

The JSON_KEYS function lists the key names on top of a JSON object. The listing provides basis for accessing all
top-list members of the JSON document providing means for accessing the corresponding value contents. As
such it is a key function for implementing the JSON update patterns for Cases 2.2, 3.2 for Db2 LUW in the Ap-
pendix 1.

The missing JSON_KEYS() function of Db2 LUW could be implemented by PYTHON subprogram applying the
following

>>> myjson = {"mem1":123,"mem2":"123" ,"mem3":true,"mem4":null,"mem5": [123, "123", true, null, [1, 2], {}],"mem6":
{"m61":1, "m62":"123", "m63": true, "m64": null, "m65":(2, 3], "m66":{} }}

>>> print(myjson.keys())

dict_keys(['mem1', 'mem2', 'mem3', 'mem4’, 'mem5', 'memé6'])

>>>

but the Python interface needs to be sorted out somehow. The Python support for Db2 LUW has been availa-
ble for some years, and unofficial instructions are available in GitHub at https://github.com/ibmdb/python-
ibmdb.

While experimenting with the JSON on Python we found out that Python requires JSON literals “true” and “false”
to start by upper case letters “True” and “False”, and it doesn’t accept the literal “null”, but for JSON_KEYS()
function we don’t need to care about these.

Implementing JSON_KEYS as external routine written in C language

Finally, we decided to implement the JSON_KEYS function to Db2 for LUW using external routine written in C
installed in Windows DLL file to be accessed by wrapper interface to build the JSON update pattern Case 2.2
for Db2 LUW.

Page 68

https://github.com/ibmdb/python-ibmdb
https://github.com/ibmdb/python-ibmdb

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

cmd clp tests: Db2 LUW on Windows:

| call Case x test(,2.) | lestdb database

pommmmeeo- TR i | procedure

| procedure |

i Case_x_test() E Case_2_2()

By 3
i Select..from : s hd | poemmeemommeoe oo ;
i_unnest(json_kevs(..)...__! % function ! tesKevs.c i

* J50N_KEY5(json, keys)

! call ISON_KEYS{json,?) i, v L. e
S wrapping procedure !
JSON_KEYS(ison, keys) | T i
Table T1 (K, J) JSON_KEYS(json, keys)

JSON_KEYS.dII file

Figure x. Building of the JSON_KEYS function for Db2 LUW

For the C-compiler to Windows 11 platform we installed the GNU gcc port MinGW-w64. Then compiling our
JSON_KEYS.c code into DLL file by

gcc -shared -Os -s -o JSON _KEYS.dll JSON KEYS.c

The interface of the generic JSON_KEYS function for limited sizes in C is following

void JSON _KEYS (char json[4001], char keys[401])

The algorithm of collecting the key names of all top-level members from a JSON document, skipping the vari-
ous value types and nested parts is quite complicated and required many test rounds, so before the final test
rounds a hosting test program was coded and tested step by step separately from the DLL file.

Disclaimer:

The compiled DLL file is available ZIPped at Jgson KEvs.zip without any guarantees, but
passed in all our tests.

We leave programming of the corresponding code as exercise for interested readers.

The JSON_KEYS function in DLL can be accessed as external stored procedure of Db2, by creating the interface
as follows

CREATE OR REPLACE PROCEDURE JSON_KEYS (
IN json VARCHAR (1000) ,
OUT keys VARCHAR (400))
SPECIFIC JSON _KEYS F
EXTERNAL NAME 'C:\Users\Martti\JSON_KEYS.dll'
FENCED
LANGUAGE C
PARAMETER STYLE GENERAL
NO SQL
DETERMINISTIC EXTERNAL ACTION;

Note: The EXTERNAL NAME clause needs to be updated to reference the directory where the DLL file is stored.

The implementation of the DLL for use of an external procedure turned out to be a tricky process. When an
external Db2 procedure is created, the DLL file becomes reserved, and it is impossible to update or even de-
lete. To replace the DLL file with a new version, we applied following steps in Db2 session and Command
Prompt window of Windows (in standalone environment without any concurrent use):

Db2:
DROP PROCEDURE JSON keys;

Page 69

https://drive.google.com/file/d/1EH2DLfqHiVNTqDFqy2eg6zx3g9YkuCW7/view?usp=drive_link

COMMIT;
FORCE APPLICATION ALL;
QUIT;

Command Prompt:
DEL JSON KEYS.dll

The error message “Access is denied.” was solved by restarting the whole Windows server. This of course, is
not possible in production environment. The problem is avoided by compiling new version of the DLL file using
name versioning for the DLL file as follows and then deleting the old version of DLL file

Creating the interface (wrapper procedure)

db2 => CREATE OR REPLACE PROCEDURE JSON_KEYS (

db2 (cont.) => IN json VARCHAR (1000),

db2 (cont.) => OUT keys VARCHAR (400))

db2 (cont.) => SPECIFIC JSON KEYS 0 1

db2 (cont.) => EXTERNAL NAME 'C:\Users\Martti\JSON KEYS 0 1.d1l1"'
db2 (cont.) => FENCED

db2 (cont.) => LANGUAGE C

db2 (cont.) => PARAMETER STYLE GENERAL

db2 (cont.) => NO SQL

db2 (cont.) => DETERMINISTIC EXTERNAL ACTION;

DB20000I The SQL command completed successfully.
db2 => COMMIT;
DB20000I The SQL command completed successfully.

Testing the procedure in Db2 CLP session:
db2 => CALL JSON KEYS('[{"meml": 123,"mem2": "123"}1', ?);
Value of output parameters

Parameter Name : KEYS
Parameter Value : ["meml", "mem2"]

Return Status = 0

Testing with the JSON of test case K=1

db2 => CALL JSON_KEYS('[{"meml":123,"mem2":"123","mem3":true, "mem4":null, "mem5": [123, "123",
true, null, [1, 2], {} 1,"mem6": { "mol":1, "m62":"123", "mo63": true, "m64": null, "mo65":[2,
31, "mee":{ } }}1', 2);

Value of output parameters

Parameter Name : KEYS
Parameter Value : ["meml","mem2", "mem3", "mem4", "mem5", "memo6"]

Return Status = 0

Testing with the JSON of test case K=2

db2 => CALL JSON_KEYS('[{"meml": 123, "mem2": "123","mem3": true,"mem4": null, "mem5": [123,
"123", "string", true, 123, 124, 124, null, [1, 21, {}, 123],"mem6": { "m6l":1, "m62":"123",
"m63": true, "m64": null, "m65":[2, 3], "m66":{} },"mem7": 123,"mem8": "123"}]1}1', ?);

Value of output parameters

Parameter Name : KEYS
Parameter Value : ["meml", "mem2", "mem3", "mem4", "mem5", "mem6", "mem7", "mem8"]

Return Status = 0

Page 70

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Creating the JSON_KEYS() function

Next, we created the SQL interface function for accessing the procedure

CREATE TYPE stringArray AS VARCHAR(20) ARRAY[100];
COMMIT;

--#SET TERMINATOR @
CREATE OR REPLACE FUNCTION JSON_KEYS
(IN kp INT,
IN Jjson VARCHAR(1000)
)
RETURNS stringArray
DETERMINISTIC
LANGUAGE SQL
SPECIFIC JSON KEYS F
BEGIN
DECLARE keys stringArray;
DECLARE ind INTEGER;
DECLARE keyList VARCHAR (400);
DECLARE key VARCHAR (20) ;
SET keys = ARRAY[];
SET ind = 1;

-- SET keyList = '""meml", "mem2", "mem3", "mem4", "mem5", "memé6""';

CALL JSON_KEYS(json, keyList); -- already tested to work properly

SET keyList = REPLACE (keyList, '[', '"'"); -- removing the square brackets
SET keyList = REPLACE (keyList, '1', ''"); -- to enable the use "ARRAY{?]

WHILE (LENGTH (keyList) > 0) DO
SET key = SUBSTR (keyList, 1,

COALESCE (NULLIF (LOCATE (', "', keyList) - 1, -1),
LENGTH (keyList)));
IF (LOCATE(',', keyList) > 0) THEN
SET keyList = SUBSTR (keyList, LOCATE(',', keyList) + 1);
ELSE
SET keyList = '';
END IF;
SET keys[ind] = key;
SET ind = ind+1;
END WHILE;
RETURN keys;
END;
@

-—#SET TERMINATOR ;

-- testing the JSON KEYS() function

SELECT t.id, t.key

FROM UNNEST(JSONiKEYS(l, "[{"meml":123, "mem2":231}]"))
WITH ORDINALITY AS t (key, id);

db2 => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST (JSON_KEYS (1, '[{"meml":123,"mem2":231}]"))
db2 (cont.) => WITH ORDINALITY AS t (key, id);
ID KEY
1 "meml"
"mem2"

2 record(s) selected.

db2 => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST (JSON_KEYS (1, (SELECT JSON QUERY (J, 'S$') FROM Tl WHERE K=1)))
db2 (cont.) => WITH ORDINALITY AS t(key, id);
ID KEY

"meml"

Hmemz "

Page 71

3 "mem3"
4 "mem4"
5 "mem5"
6 "mem6"

6 record(s) selected.

db2 =>

Creating test version for the Case 2.2

Now that we have implemented the JSON_KEYS() function for Db2 for LUW on Windows, it is time to
apply it for our JSON maintenance cases. We will use cursor programming to browse thru the list of
keys found by the JSON_KEYS() function,

db2 => DECLARE keycurs CURSOR FOR

db2 (cont.) => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST (JSON_KEYS ((SELECT JSON_QUERY (J, '$') FROM T1 WHERE K=1)))
db2 (cont.) => WITH ORDINALITY AS t(key, id)

db2 (cont.) => FOR FETCH ONLY

db2 (cont.) => WITH UR;

DB20000I The SQL command completed successfully.
db2 => OPEN keycurs;
DB20000I The SQL command completed successfully.
db2 => FETCH keycurs;

1 record(s) selected.

db2 => CLOSE keycurs;
DB20000I The SQL command completed successfully.

and by the current key we read the value of the corresponding member. If the value matches with
the given value for processing of the Case, then the member will be updated or deleted depending
on the Case.

--#SET TERMINATOR @
CREATE OR REPLACE PROCEDURE Case272
(IN kp INT,
IN given value VARCHAR(100),
IN new_value VARCHAR(100),
-- OUT parameters are meant only for testing purposes:

OUT id INT,

OUT mem_Name VARCHAR (20),

OUT old_value VARCHAR (100) ,
OUT json_out VARCHAR (1000)

)
SPECIFIC Case2 2
LANGUAGE SQL
BEGIN ATOMIC
DECLARE json VARCHAR(1000);
DECLARE memCount INT;
DECLARE memName VARCHAR(20);
DECLARE oldValue VARCHAR(1000) ;
DECLARE sglcode INT DEFAULT O;
DECLARE keycurs CURSOR FOR
SELECT t.id, t.key
FROM UNNEST (JSON_KEYS ((SELECT JSON_ QUERY (J, '$') FROM Tl WHERE K=kp)))
WITH ORDINALITY AS t (key, id)
FOR FETCH ONLY
WITH UR;
SELECT BSON TO JSON(J) INTO json FROM T1 WHERE K = kp;

Page 72

DBTechlLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

set json_out = json; -- only for tracing
-- Loop through the JSON members
OPEN keycurs;
WHILE sglcode = 0 DO

FETCH keycurs INTO id, memName; -- Extract the value at the current index
set mem Name = memName; -- only for tracing

SET memName = REPLACE (memName, '"', '');

SELECT JSON_QUERY (J, 'S.' || memName || ' ') INTO oldvValue

FROM T1 WHERE K = kp;
set old Value = oldValue; -- only for tracing

-- Check if the value matches '123"'
IF (oldvalue = given value) THEN
UPDATE T1
SET J = SYSTOOLS.JSON UPDATE (J, '{$set: {' || memName || ': ' || new value || "'}} ")
WHERE K = kp;
END IF;
-- return; -- stop for tracing
END WHILE;
END;
@
--#SET TERMINATOR ;

We can now apply test version of the Case 2.2 by reading the output parameters by questions marks
as follows:

CALL Case2 2 (1, '123', '127', 2, 2, 2, 2?);
db2 => CALL Case2 2 (1, '123', '127', 2, 2, 2, ?);
Value of output parameters

Parameter Name : ID
Parameter Value : 6

Parameter Name : MEM NAME
Parameter Value : mem6

Parameter Name : OLD VALUE

Parameter Value : { "m61" : 1, "m62" : "123", "m63" : true, "mo64" : null, "me5" : [2, 3 1,
"mee" : { } }

Parameter Name : JSON OUT

Parameter Value : { "meml" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [
123, "123", true, null, [1, 2 1, { }1, "memo6" : { "m6l"™ : 1, "me2" : "123", "m63" : true,
"m64" : null, "mé65" : [2, 3 1, "mé6e" : { '} } }

Return Status = 0
db2 =>

Note: the JSON_OUT parameter shows the original json, whereas we need to check the updated
document by JSON_QUERY as follows:

db2 => SELECT cast (K as smallint) as k,

db2 (cont.) => JSON_QUERY (J, 'strict $' RETURNING VARCHAR(1000)) as result
db2 (cont.) => FROM Tl WHERE K=1;
K RE-
SULT

1 { "meml" : 127, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",
true, null, [1, 2 1, { } 1, "mem6" : { "m6l"™ : 1, "mo62" : "123", "m63" : true, "m64" : null,
"m65" : [2, 3 1, "mee"™ : { '} }

}

1 record(s) selected.

db2 => rollback;

Page 73

DB20000I The SQL command completed successfully.

How about keys of nested objects?

db2 => SELECT t.id, t.key

db2 (cont.)

db2 (cont.)

ID
1
2
3
4
5
6

6 record(s

db2 =>

=> FROM UNNEST (JSON_KEYS ((SELECT JSON QUERY (J, '$.mem6') FROM T1 WHERE K=1)))
=> WITH ORDINALITY AS t (key, id);

"m61"
"m62"
"m63"
"m64"
"m65"
"m66"

) selected.

As our JSON_KEYS() now works, we can proceed by removing the output variables and implement
the Case 2.2 and Case 3.2.

References

GitHub, “Python support for IBM Db2 for LUW and IBM Db2 for z/0S”,
https://github.com/ibmdb/python-ibmdb

Silpid K., “C-KIELI”, 1992, ATK-instituutti
- great source of C language for Finnish readers

Stuber S. D., “How to create a PL/SQL function to iterate JSON Keys for SQL”, 2024, https://seanstu-
ber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/

Wikipedia, “Mingw-w64”, at https://en.wikipedia.org/wiki/Mingw-w64

Page 74

https://github.com/ibmdb/python-ibmdb
https://seanstuber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/
https://seanstuber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/
https://en.wikipedia.org/wiki/Mingw-w64

