
DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 1

 JSON on RDBMS Databases

 Martti Laiho

 Standalone collection of Appendices for the tutorial “JSON_on_RDBMS_Databases”

 The latest version of this pdf is available by link JSON Data Maintenance

Contents

Appendix 1. JSON Data Maintenance ... 2

JSON Data Structure, Types and Terminology ... 2

“CRUD” operations to the JSON structures... 3

JSON manipulation experiments using SQL/JSON of Db2 for LUW .. 5

Setting up the experiment.. 5

Accessing JSON objects .. 6

Accessing JSON arrays .. 9

Summary.. 15

JSON manipulation experiments using SQL/JSON of Oracle 23ai .. 15

Setting up the experiment.. 15

Accessing JSON objects .. 16

Accessing JSON arrays .. 20

JSON manipulation experiments using T-SQL/JSON of SQL Server .. 24

Setting up the experiment.. 24

OPENJSON function of T-SQL/JSON .. 25

Accessing JSON objects .. 26

Accessing JSON arrays .. 29

Summary.. 32

JSON manipulation experiments using pSQL/JSON of PostgreSQL .. 32

Setting up the experiment.. 32

Accessing JSON objects on top level in the path expression ... 34

Accessing JSON arrays .. 40

JSON manipulation experiments using SQL/JSON of MySQL/MariaDB .. 47

Comparing JSON implementations of MySQL and MariaDB .. 47

Setting up the experiment.. 49

Some querying models ... 49

Accessing JSON objects .. 51

Accessing JSON arrays .. 54

Summary.. 58

On UNIQUE KEYS requirement of JSON members ... 58

Db2 for LUW: ... 59

https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1dku2FG2dcXz-_WiU9MErcSzvRTyCcqMB/view?usp=drive_link

Page 2

Oracle 23ai: .. 60

SQL Server XE ... 60

PostgreSQL... 61

MariaDB ... 62

Summary – A Critique of SQL/JSON .. 63

Acknowledgements .. 64

References ... 64

Index .. 66

Appendix 2 Counting number of object members on top level? .. 67

Db2 for LUW .. 67

Oracle 23ai ... 67

SQL Server.. 67

PostgreSQL... 67

MariaDB: .. 68

Appendix 3 Implementing JSON_KEYS function to Db2 for LUW?.. 68

Implementing JSON_KEYS as external routine written in C language .. 68

References ... 74

Appendix 1. JSON Data Maintenance

 In Search for the JSON Update Patterns

JSON Data Structure, Types and Terminology

JSON, JavaScript Object Notation, based on JavaScript, defines language-independent simple textual data

structures, adaptable in most modern programming languages and SQL dialects. The terminology of JSON

datatypes used on documentations and articles of various SQL/JSON dialects varies, but we try use the follow-

ing terminology.

The JSON data types applied in SQL/JSON are following:

Primitive (scalar) value types:

Number: an integer, decimal, or floating-point number in textual format

String: a sequence of zero or more Unicode characters, the sequence enclosed in double quotes

 (except the escaped characters, see the RFC 8259)

Boolean: the value presented either by literal true or false

null: empty value presented by the literal null

Structured types (nestable):

Array: ordered list of zero or more JSON elements (ISO OBP: tokens) of any JSON data type, the list enclosed in

square brackets. An element can be unnamed scalar or nestable value, for example

[a, b, c] or [1, a, 1, {b:bb}, {c:cc}], without unique requirement, i.e. same value can appear multiple times as

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 3

element in the array. Standalone name/value pairs are not allowed, but can appear enclosed in curly braces,

i.e. as object members.

JSON object: consists of comma separated unordered list of zero or more members (a.k.a. fields1 in SQL/JSON

or properties), the list enclosed in curly braces, for example an empty object as { }. The members are

name/value pairs (a.k.a. key/value pairs) in format “name”:”value”, where the <name> (a.k.a. key) is a string

enclosed in double quotes, and the <value> is any of JSON data types, an atomic type, an array, or an object.

This recursive definition allows hierarchically structured JSON objects similar to XML documents. The names of

members SHOULD be defined unique2 within the object, using WITH UNIQUE KEYS clause (Petkovic 2017).

However, the same name can appear for members on different nesting levels without problems.

Some implementations, such as Oracle SQL/JSON, don’t require keys to be enclosed in double quotes.

Numeric values, literals, as well as array and object values are not quoted.

JSON document: in SQL/JSON a JSON document in SQL statements is a JSON object enclosed in single quotes

as SQL string as follows: ‘{ <list of members> }’

Note: all keys and the JSON literals in SQL/JSON are case-sensitive.

“CRUD” operations to the JSON structures

The ISO SQL/JSON standard is focused on JSON Query Language, leaving the UPDATE/DELETE part to be solved

by SQL implementations in RDBMS systems.

In RDBMS (SQL) databases JSON data is stored as a JSON document per column of JSON type (native or imple-

mentation dependent SQL type) in SQL tables. An entire JSON document is stored as part of SQL INSERT oper-

ation or can be replaced as a whole as part of SQL UPDATE of a JSON column.

The question of uniqueness of JSON object member names is a bit confusing, since in case of duplicate names

either the first or the last one will be the acting member depending on the implementation. We will discuss

this topic in a later chapter, experimenting on how our selected RDBMS products behave in this respect. Both

Oracle and Db2 LUW require the member names in an object to be unique. In the following we restrict to use

cases where the object member names are unique.

For the CRUD operations we propose following set of maintenance use cases reasoned from the technical

JSON data structure we discussed above.

1The term “field” has been used, for example, in SQL Server, MySQL, PostgreSQL articles/documentation.
2 According to IETF JSON specification RFC 8259 Dec 2017 “The names within an object SHOULD be unique”..
“When the names within an object are not unique, the behavior of software that receives such an object is
 unpredictable.” Considering this the WITHOUT UNIQUE KEYS of SQL/JSON proposal and in some implemen-
tations is just a “casting defict” and should be removed. We will debate on this in the last chapter below.

https://archive.org/details/rfc8259

Page 4

Basic use case operations on part of JSON objects include following:

Case 1: Inserting a new member

Case 2.1: Updating value of an existing member found by key

Case 2.2: Updating value of ALL existing members found by given value

since the JSON data model does not require values of members to be unique

Case 3.1: Deleting an existing member found by key

Case 3.2: Deleting ALL existing members found by given value

since the JSON data model does not require values of members to be unique

and use case operations on part of JSON arrays

Case 4: Inserting a new element

Case 5.1: Updating value of an existing element found by position

Case 5.2: Updating the value of ALL existing elements found by given value

since the JSON data model does not require values of elements in an array to be unique

Case 6.1: Deleting an existing element found by position

Case 6.2: Deleting ALL existing elements found by given value

since the JSON data model does not require values of elements in an array to be unique

The paper “Implementation of JSON Update Framework in RDBMSs“ (Petkovic, Feb 2020) presents almost

similar list of UPDATE primitives, except that inserts of array elements before or after an existing element are

considered as different cases, commenting that these are optional “because there is no ordering of objects

[elements], generally”.

The “found by given value” operations may not be typical operations on JSON data in practice, but considering

the JSON data model, as we have described above, possible operations at least in theory. The designers of the

ANSI SQL/JSON proposal seem to have overlooked the possible need to query all name-value pairs or name of

the member containing the given value. The “ALL operations” on JSON object or array which doesn’t contain

duplicate values are just single JSON operations, but in operations on duplicate values may need procedural

logic or use of programming languages.

Now, after presenting these JSON maintenance use cases, we continue the search for maintenance patterns,

the working solutions for these use cases, based on SQL/JSON implementations in the systems we have stud-

ied.

Beside the top level of JSON document, the access patterns which we have discussed above can be applied

also on accessing nested objects and arrays by proper path expressions.

Instead of the typical “Joe and his friends” examples in JSON literature, for our test cases we use following

minimalistic documents, based just on technical JSON data structure and data types, one without duplicate

values

'{"mem1":123, "mem2":"123", "mem3":true, "mem4":null, "mem5":[123, "123", true, null, [1, 2],

{}], "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} } }'

and one with duplicate values of members, and duplicate array elements

'{"mem1": 123, "mem2": "123", "mem3": true, "mem4": null, "mem5":[123, "123", "string", true,

123, 124, 124, null, [1, 2], {}, 123], "mem6": { "m61":1, "m62":"123", "m63": true, "m64":

null, "m65":[2, 3], "m66":{} }, "mem7": 123, "mem8": "123" }'

Note: Also array elements could include any nested JSON structures, but according to our tests without key

names. See the unnamed array and object in our example.

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 5

In the following chapters we will be experimenting with selected RDBMS systems on how to implement the

JSON update use cases defined above. Every experiment will be run in a transaction which is rolled back to

save the original content for next experiments.

JSON manipulation experiments using SQL/JSON of Db2 for LUW

We have discussed on use of Db2 already in the main paper “JSON_on_RDBMS_Databases” and in

following we will be experimenting just on the proposed JSON update patterns above using Db2 12.1.1 on

Windows 11.

Setting up the experiment

CREATE TABLE T1(

K INT NOT NULL PRIMARY KEY,

J BLOB,

CONSTRAINT Chk_UserData CHECK (SYSTOOLS.BSON_Validate(J) = 1)

);

-- inserting/initializing the contents

DELETE FROM T1;

-- basic document without duplicates

INSERT INTO T1 (K, J) VALUES

(1, SYSTOOLS.JSON2BSON('{

 "mem1":123,

 "mem2":"123",

 "mem3":true,

 "mem4":null,

 "mem5": [123, "123", true, null, [1, 2], {}],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

 }'));

-- document with duplicate keys and elements

INSERT INTO T1 (K, J) VALUES

(2, SYSTOOLS.JSON2BSON('{

 "mem1": 123,

 "mem2": "123",

 "mem3": true,

 "mem4": null,

 "mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} },

 "mem7": 123,

 "mem8": "123"

 }'));

COMMIT;

-- verifying the contents of document K = 2
db2 => SELECT JSON_QUERY(J, 'strict $' RETURNING VARCHAR(1000)) AS json FROM T1 WHERE K=2;

JSON

--

. . .

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123", "string",

true, 123, 124, 124, null, [1, 2], { }, 123], "mem6" : { "m61" : 1, "m62" : "123", "m63" :

true, "m64" : null, "m65" : [2, 3], "m66" : { } }, "mem7" : 123, "mem8" : "123"

}

 1 record(s) selected.

db2 =>

https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link
https://drive.google.com/file/d/1eoU9KIQrMwI0YkdPdPm6jIgi-0hRffNI/view?usp=drive_link

Page 6

Accessing JSON objects

Case 1: Adding a new member on top level

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem7:"123"}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem7' RETURNING CHAR(60)) AS mem7

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem7:"123"}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem7' RETURNING CHAR(60)) AS mem7

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM7

----------- --

 1 "123"

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 2.1: Updating value of an existing member found by key

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem1: 124}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem1' RETURNING CHAR(60)) AS mem1

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem1: 124}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem1' RETURNING CHAR(60)) AS mem1

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM1

----------- --

 1 124

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 2.2: Updating value of all existing members found by given value

For this pattern we apply cleaned version of the stored procedure solution presented in Appendix 3 as follows:

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 7

--#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case2_2

 (IN kp INT,

 IN given_value VARCHAR(100),

 IN new_value VARCHAR(100)

)

SPECIFIC Case2_2

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE json VARCHAR(1000);

 DECLARE loop INT default 0;

 DECLARE id INT;

 DECLARE memName VARCHAR(20);

 DECLARE oldValue VARCHAR(1000);

 DECLARE sqlcode INT DEFAULT 0;

 DECLARE keycurs CURSOR FOR

 SELECT t.id, t.key

 FROM UNNEST(JSON_KEYS((SELECT JSON_QUERY(J, '$') FROM T1 WHERE K=kp)))

 WITH ORDINALITY AS t(key, id)

 FOR FETCH ONLY

 WITH UR;

 SELECT BSON_TO_JSON(J) INTO json FROM T1 WHERE K = kp;

 OPEN keycurs;

 WHILE sqlcode = 0 AND loop < 100 DO

 SET loop = loop + 1;

 FETCH keycurs INTO id, memName; -- Extract the value at the current index

 SET memName = REPLACE(memName, '"', '');

 SELECT JSON_QUERY(J, '$.' || memName || ' ') INTO oldValue

 FROM T1 WHERE K = kp;

 IF (oldValue = given_value) THEN

 UPDATE T1

 SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {' || memName || ': ' || new_value || '}} ')

 WHERE K = kp;

 END IF;

 END WHILE;

END;

@

--#SET TERMINATOR ;

Tested as follows:

db2 => SELECT cast(K as smallint) as k,

db2 (cont.) => JSON_QUERY(J, 'strict $' RETURNING varchar(1000)) as result

db2 (cont.) => FROM T1 WHERE K=2;

K RESULT

 2 { "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",

"string", true, 123, 124, 124, null, [1, 2], { }, 123], "mem6" : { "m61" : 1, "m62" :

"123", "m63" : true, "m64" : null, "m65" : [2, 3], "m66" : { } }, "mem7" : 123, "mem8" :

"123" }

1 record(s) selected.

db2 => CALL Case2_2 (2, '123', '129');

 Return Status = 0

db2 => SELECT cast(K as smallint) as k,

db2 (cont.) => JSON_QUERY(J, 'strict $' RETURNING varchar(1000)) as result

db2 (cont.) => FROM T1 WHERE K=2;

K RESULT

 2 { "mem1" : 129, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",

"string", true, 123, 124, 124, null, [1, 2], { }, 123], "mem6" : { "m61" : 1, "m62" :

"123", "m63" : true, "m64" : null, "m65" : [2, 3], "m66" : { } }, "mem7" : 129, "mem8" :

"123" }

1 record(s) selected.

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Page 8

Case 3.1: Deleting an existing member found by key

Db2 SQL/JSON does not include function such as JSON_REMOVE. Only available option for deleting

a JSON object member is to mark it deleted by the literal value “null”, reported as “-“, as follows:

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem1: null}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem1' RETURNING CHAR(60)) AS mem1

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {mem1: null}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem1' RETURNING CHAR(60)) AS mem1

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM1

----------- --

 1 -

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 3.2: Deleting all existing members found by given value

For this pattern we have modified from Case 2.2 the following solution

--#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case3_2

 (IN kp INT,

 IN given_value VARCHAR(100)

)

SPECIFIC Case3_2

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE json VARCHAR(1000);

 DECLARE loop INT default 0;

 DECLARE id INT;

 DECLARE memName VARCHAR(20);

 DECLARE oldValue VARCHAR(1000);

 DECLARE sqlcode INT DEFAULT 0;

 DECLARE keycurs CURSOR FOR

 SELECT t.id, t.key

 FROM UNNEST(JSON_KEYS((SELECT JSON_QUERY(J, '$') FROM T1 WHERE K=kp)))

 WITH ORDINALITY AS t(key, id)

 FOR FETCH ONLY

 WITH UR;

 SELECT BSON_TO_JSON(J) INTO json FROM T1 WHERE K = kp;

 OPEN keycurs;

 WHILE sqlcode = 0 AND loop < 100 DO

 SET loop = loop + 1;

 FETCH keycurs INTO id, memName; -- Extract the value at the current index

 SET memName = REPLACE(memName, '"', '');

 SELECT JSON_QUERY(J, '$.' || memName || ' ') INTO oldValue

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 9

 FROM T1 WHERE K = kp;

 IF (oldValue = given_value) THEN

 UPDATE T1

 SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {' || memName || ': null }} ')

 WHERE K = kp;

 END IF;

 END WHILE;

END;

@

--#SET TERMINATOR ;

Tested as follows

db2 => SELECT cast(K as smallint) as k,

db2 (cont.) => JSON_QUERY(J, 'strict $' RETURNING varchar(1000)) as result

db2 (cont.) => FROM T1 WHERE K=2;

K RESULT

------ ---

 2 { "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",

"string", true, 123, 124, 124, null, [1, 2], { }, 123], "mem6" : { "m61" : 1, "m62" :

"123", "m63" : true, "m64" : null, "m65" : [2, 3], "m66" : { } }, "mem7" : 123, "mem8" :

"123" }

 1 record(s) selected.

db2 => CALL Case3_2 (2, '123');

 Return Status = 0

db2 => SELECT cast(K as smallint) as k,

db2 (cont.) => JSON_QUERY(J, 'strict $' RETURNING varchar(1000)) as result

db2 (cont.) => FROM T1 WHERE K=2;

K RESULT

------ --

 2 { "mem1" : null, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",

"string", true, 123, 124, 124, null, [1, 2], { }, 123], "mem6" : { "m61" : 1, "m62" :

"123", "m63" : true, "m64" : null, "m65" : [2, 3], "m66" : { } }, "mem7" : null, "mem8" :

"123" }

 1 record(s) selected.

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Note: Deleted members are not removed in Db2, but marked as deleted by value “null”. To remove those
members having value “null”, we would need to first copy the json data to string operations in some external
routine, and finally replace the original row column in database by the operated json data.

Accessing JSON arrays

Case 4: Adding a new element into an array

-- using by too big index, the new element is appended in the array

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {"mem5.100": 127}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

Page 10

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {"mem5.100": 127}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM5

----------- --

 1 [123, "123", true, null, [1, 2], { }, 127]

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 5.1: Updating value of an existing element found by position

Updating existing element in given position in array value of given member is supported in Db2

SQL/JSON as follows for index 0 of mem5 member:

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {"mem5.0": 124}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {"mem5.0": 124}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM5

----------- --

 1 [124, "123", true, null, [1, 2], { }]

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 5.2: Updating value of all existing elements found by value

For this pattern we have built following stored procedure which first checks number of elements and then

browses the array of elements one at a time and updates those having the “given value” by the “new value”

--#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case5_2

 (IN kp INT,

 in memName VARCHAR(20),

 IN given_value VARCHAR(100),

 IN new_value VARCHAR(100)

)

SPECIFIC Case5_2

LANGUAGE SQL

BEGIN ATOMIC

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 11

 DECLARE ind INT;

 DECLARE elemCount INT;

 DECLARE qry_expr VARCHAR(100);

 DECLARE old_value VARCHAR(100);

 DECLARE upd_expr VARCHAR(100);

 --

 SELECT SYSTOOLS.JSON_LEN(J, 'mem5') INTO elemCount

 FROM T1 WHERE K = kp;

 -- Loop through the JSON members

 SET ind = 0;

 WHILE ind < elemCount DO

 BEGIN

 -- Extract the value at the current index

 SET qry_expr = '$.'|| memName || '[' || ind || ']' ;

 SELECT JSON_VALUE(J, '' || qry_expr || '') INTO old_value

 FROM T1 WHERE K = kp;

 IF (old_value = given_value) THEN BEGIN

 SET upd_expr =

 '{$set: {"' || memName || '.' || ind || '": ' || new_value || ' }}';

 UPDATE T1

 SET J = SYSTOOLS.JSON_UPDATE(J, '' || upd_expr || '')

 WHERE K = kp;

 END;

 END IF;

 -- Increment the index

 SET ind = ind + 1;

 END;

 END WHILE;

END;

@

--#SET TERMINATOR ;

Testing the pattern as follows

SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

CALL Case5_2 (1, 'mem5','123', '127');

SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

ROLLBACK;

db2 => SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

1

--

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123", true,

null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"

: [2, 3], "m66" : { } } }

 1 record(s) selected.

db2 => CALL Case5_2 (1, 'mem5','123', '127');

 Return Status = 0

db2 => SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

1

--

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [127, 127, true, null,

[1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65" : [

2, 3], "m66" : { } } }

 1 record(s) selected.

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Note: The solution treats integer value 123 and string value “123” as the sme.

Page 12

Case 6.1: Deleting an existing element found by position

Like deleting a member by only marking it as deleted by value “null”, the same concerns elements in

the array value of a given member.

-- See Baklarz p 135

-- "It is not actually possible to remove an item from an array, but it is

-- possible to set the specific array value to null."

UPDATE T1

SET J = SYSTOOLS.JSON_UPDATE(J, '{$unset: {"mem5.0": null}}')

WHERE K = 1;

-- verifying the contents

SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

FROM T1 WHERE K = 1;

--

ROLLBACK;

db2 => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '{$unset: {"mem5.0": null}}')

db2 (cont.) => WHERE K = 1;

 Number of rows affected : 1

DB20000I The SQL command completed successfully.

db2 => -- verifying the contents

db2 => SELECT K, JSON_QUERY(J, '$.mem5' RETURNING CHAR(60)) AS mem5

db2 (cont.) => FROM T1 WHERE K = 1;

K MEM5

----------- --

 1 [null, "123", true, null, [1, 2], { }]

 1 record(s) selected.

db2 => --

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Case 6.2: Deleting all existing elements found by given value

This pattern is based on the pattern 5.2 modified to replace the old matching elements by literal

“null”.

--#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case6_2

 (IN kp INT,

 in memName VARCHAR(20),

 IN given_value VARCHAR(100)

)

SPECIFIC Case6_2

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE ind INT;

 DECLARE elemCount INT;

 DECLARE qry_expr VARCHAR(100);

 DECLARE old_value VARCHAR(100);

 DECLARE upd_expr VARCHAR(100);

 --

 SELECT SYSTOOLS.JSON_LEN(J, 'mem5') INTO elemCount

 FROM T1 WHERE K = kp;

 -- Loop through the JSON members

 SET ind = 0;

 WHILE ind < elemCount DO

 BEGIN

 -- Extract the value at the current index

 SET qry_expr = '$.'|| memName || '[' || ind || ']' ;

 SELECT JSON_VALUE(J, '' || qry_expr || '') INTO old_value

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 13

 FROM T1 WHERE K = kp;

 IF (old_value = given_value) THEN BEGIN

 SET upd_expr =

 '{$set: {"' || memName || '.' || ind || '": null }}';

 UPDATE T1

 SET J = SYSTOOLS.JSON_UPDATE(J, '' || upd_expr || '')

 WHERE K = kp;

 END;

 END IF;

 -- Increment the index

 SET ind = ind + 1;

 END;

 END WHILE;

END;

@

--#SET TERMINATOR ;

COMMIT;

SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

CALL Case6_2 (1, 'mem5','123');

SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

ROLLBACK;

db2 => SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

1

--

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123", true,

null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"

: [2, 3], "m66" : { } } }

 1 record(s) selected.

db2 => CALL Case6_2 (1, 'mem5','123');

 Return Status = 0

db2 => SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

1

--

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [null, null, true,

null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"

: [2, 3], "m66" : { } } }

 1 record(s) selected.

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

The “deleted” elements are now just replaced by “null” values. However, copying the whole element list of

the selected member as string to a variable “elements”, using REPLACE(elements, 'null,', '') function the null

elements can be removed. Then updating the selected member with the updated element list, all “deleted”

elements will be removed like in following experiment:

db2 => CALL Case6_2 (1, 'mem5','123');

 Return Status = 0

db2 => SELECT JSON_QUERY(J, '$' returning varchar(300)) FROM T1 WHERE K = 1;

1

{ "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [null, null, true,

null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65"

: [2, 3], "m66" : { } } }

 1 record(s) selected.

db2 => --#SET TERMINATOR @

Page 14

db2 => CREATE OR REPLACE PROCEDURE CleanNullsFor

db2 (cont.) => (IN kp INT,

db2 (cont.) => IN memName VARCHAR(30),

db2 (cont.) => OUT qryPath VARCHAR(100),

db2 (cont.) => OUT upd_expr VARCHAR(500),

db2 (cont.) => OUT elems_before VARCHAR(400),

db2 (cont.) => OUT elements VARCHAR(400)

db2 (cont.) =>)

db2 (cont.) => SPECIFIC CleanNullsFor

db2 (cont.) => LANGUAGE SQL

db2 (cont.) => BEGIN

db2 (cont.) => -- DECLARE elements VARCHAR(4000);

db2 (cont.) => -- DECLARE path VARCHAR(100);

db2 (cont.) => SET qryPath = '$.' || memName ;

db2 (cont.) => SELECT JSON_QUERY(J, '' || qryPath || ''RETURNING VARCHAR(400))

db2 (cont.) => INTO elements

db2 (cont.) => FROM T1 WHERE K = kp;

db2 (cont.) => set elems_before = elements;

db2 (cont.) => SET elements = REPLACE(elements, 'null,', '');

db2 (cont.) => SET elements = REPLACE(elements, ' ', '');

db2 (cont.) => SET elements = REPLACE(elements, ',', ', ');

db2 (cont.) => SET elements = REPLACE(elements, ', null]', ']');

db2 (cont.) => -- SET updPath = '$.' || memName || ': ' || elements || '' ;

db2 (cont.) => SET upd_expr =

db2 (cont.) => '{$set: {"' || memName || '": ' || elements || '}}';

db2 (cont.) => UPDATE T1

db2 (cont.) => SET J = SYSTOOLS.JSON_UPDATE(J, '' || upd_expr || '')

db2 (cont.) => WHERE K = kp;

db2 (cont.) => END;

db2 (cont.) => @

DB20000I The SQL command completed successfully.

db2 => --#SET TERMINATOR ;

db2 => --

db2 => CALL CleanNullsFor(1, 'mem5',?,?,?,?);

 Value of output parameters

 Parameter Name : QRYPATH

 Parameter Value : $.mem5

 Parameter Name : UPD_EXPR

 Parameter Value : {$set: {"mem5": [true, [1, 2], {}]}}

 Parameter Name : ELEMS_BEFORE

 Parameter Value : [null, null, true, null, [1, 2], { }]

 Parameter Name : ELEMENTS

 Parameter Value : [true, [1, 2], {}]

 Return Status = 0

db2 => SELECT JSON_QUERY(J, '$.mem5' RETURNING VARCHAR(400)) FROM T1 WHERE K= 1;

1

[true, [1, 2], { }

]

 1 record(s) selected.

db2 => ROLLBACK;

DB20000I The SQL command completed successfully.

Now that we have verified the intermediate values of the OUT parameters, we can move them into local varia-

bles. To change the semantics of “delete” to “remove”, the actions of “CleanNullsFor” should be applied at

the end of procedure “Case6_2”.

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 15

Summary

SQL/JSON implementations on different Db2 editions vary. We are interested in the Db2 for LUW (Linux, Unix
and Windows) edition. Surprisingly, in this edition the JSON_TABLE function does not include the FOR ORDI-
NALITY clause. Also, it doesn’t include means for sorting out the count of top-level members in a JSON docu-
ment, and no means for accessing the members by position. The missing JSON_KEYS() function could be im-
plemented by some Python subprogram applying the keys() function as following

>>> myjson = {"mem1":123,"mem2":"123","mem3":true,"mem4":null,"mem5": [123, "123", true, null, [1, 2], {}],"mem6": { "m61":1,

"m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }}

>>> print(myjson.keys())

dict_keys(['mem1', 'mem2', 'mem3', 'mem4', 'mem5', 'mem6'])

>>>

but the interface needs to be sorted out somehow (see Appendix 3)

JSON manipulation experiments using SQL/JSON of Oracle 23ai

The ISO SQL/JSON of Oracle native JSON data type based on its binary storage implementation OSON discussed

by Liu et al. (SIGMOD 2016, VLDB 2020) and Gugnani et al. (SIGMOD 2025) featuring direct in-memory updates

of JSON document without full document replacements.

In addition to the general numeric data types of JSON, JSON/OSON extends types to packed decimal, IEEE

float/double, date, timestamp, interval, and raw types of SQL primitives.

From SQL/JSON 2016 standard JSON/OSON implements cast functions of strings such as .number(), .string(),

.date(), .binary() to non-string data types.

The SQL/JSON path expression/filter expression implementations of JSON_TRANSFORM function will greatly

simplify our JSON update experiments and obviously provide performance boost.

Setting up the experiment

For our experiments we create the following SQL table for storing our JSON document

CREATE TABLE T1(
K INT NOT NULL PRIMARY KEY,
J JSON);

Inserting JSON document as part of an inserted rows

-- our basic document without duplicates

INSERT INTO T1 (K, J) VALUES

(1, '{ mem1: 123,

 mem2: "string",

 mem3: true,

 mem4: null,

 mem5: [123, "string", true, null, []],

 mem6: { m62: "string", m63: true, m64: null, m65: [], m66: {} }

 }');

-- document with duplicate keys and elements

INSERT INTO T1 (K, J) VALUES

(2, '{ mem1: 123,

Page 16

 mem2: "123",

 mem3: true,

 mem4: null,

 mem5: [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],

 mem6: { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3],

"m66":{} },

 mem7: 123,

 mem8: "123"

 }');

COMMIT;

In spite of the ISO SQL/JSON specification the JSON update operations in different RDBMS systems and even

versions differ. In the following we will focus on use of Oracle 23ai implementation making extensive use of

JSON path and its filter expressions3.

Accessing JSON objects

Case 1: Adding a new member on top level

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, INSERT '$.mem7' = 'new')
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 123,
 "123",
 true,
 null,
 [
]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 },

3Filter expressions are defined in chapter “5.12 Filter expression” of “SQL/JSON: Part 2 -Querying JSON”, and
also explained on page “17.2 SQL/JSON Path Expression Syntax” of JSON Developer’s Guide.

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 17

 "mem7" : "new"
}

SQL> ROLLBACK;

Rollback complete.

Case 2.1: Updating value of an existing member found by key

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, SET '$.mem1' = 124)
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 124,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 123,
 "123",
 true,
 null,
 [
]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

Case 2.2: Updating value of all existing members found by given value

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REPLACE '$.*?(@==123)' = 124)
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)

Page 18

 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 124,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" : 124,
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

SQL>

Case 3.1: Deleting an existing member found by key

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REMOVE '$.mem1')
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 123,
 "123",
 true,
 null,
 [
]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 19

 }
}

SQL> ROLLBACK;

Rollback complete.

Case 3.2: Deleting all existing members found by given value

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REMOVE '$.*?(@==123)')
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem6" :

 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :

 [

],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

UPDATE T1

SET J = JSON_TRANSFORM (J, REMOVE '$.*?(@==123)')

WHERE K = 2;

SELECT JSON_SERIALIZE (J PRETTY)

FROM T1 WHERE K = 2;

ROLLBACK;

SQL> UPDATE T1

 2 SET J = JSON_TRANSFORM (J, REMOVE '$.*?(@==123)')

 3* WHERE K = 2;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)

 2* FROM T1 WHERE K = 2;

JSON_SERIALIZE(JPRETTY)

{

 "mem3" : true,

 "mem4" : null,

 "mem6" :

 {

 "m61" : 1,

 "m62" : "123",

 "m63" : true,

 "m64" : null,

Page 20

 "m65" :

 [

 2,

 3

],

 "m66" :

 {

 }

 }

}

SQL> ROLLBACK;

Rollback complete.

Accessing JSON arrays

Case 4: Adding a new element into an array

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, APPEND '$.mem5' = 124)
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 123,
 "123",
 true,
 null,
 [
],
 124
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

SQL>

Case 5.1: Updating value of an existing element found by position

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 21

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, SET '$.mem5[0]' = 124)
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 124,
 "123",
 true,
 null,
 [
]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

Case 5.2: Updating value of all existing elements found by value

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REPLACE '$.mem5[*]?(@==123)' = 124)
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 124,
 "123",
 true,
 null,
 [

Page 22

]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

Rollback complete.

Case 6.1: Deleting an existing element found by position

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REMOVE '$.mem5[0]')
 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,
 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 "123",
 true,
 null,
 [
]
],
 "mem6" :
 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }
}

SQL> ROLLBACK;

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 23

Rollback complete.

SQL>

Case 6.2: Deleting all existing elements found by given value

SQL> UPDATE T1
 2 SET J = JSON_TRANSFORM (J, REMOVE '$.mem5[*]?(@==123)')

 3* WHERE K = 1;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY)
 2* FROM T1 WHERE K = 1;

JSON_SERIALIZE(JPRETTY)

{
 "mem1" : 123,

 "mem2" : "123",
 "mem3" : true,
 "mem4" : null,
 "mem5" :
 [
 "123",
 true,
 null,
 [
]
],
 "mem6" :

 {
 "m62" : "123",
 "m63" : true,
 "m64" : null,
 "m65" :
 [
],
 "m66" :
 {
 }
 }

}

SQL> ROLLBACK;

Rollback complete.

SQL> UPDATE T1

 2 SET J = JSON_TRANSFORM (J, REMOVE '$.mem5[*]?(@==123)')

 3* WHERE K = 2;

1 row updated.

SQL> SELECT JSON_SERIALIZE (J PRETTY) FROM T1 WHERE K = 2;

JSON_SERIALIZE(JPRETTY)

{

 "mem1" : 123,

 "mem2" : "123",

 "mem3" : true,

 "mem4" : null,

 "mem5" :

 [

 "string",

 true,

 124,

Page 24

 124,

 null,

 [

 1,

 2

],

 {

 }

],

 "mem6" :

 {

 "m61" : 1,

 "m62" : "123",

 "m63" : true,

 "m64" : null,

 "m65" :

 [

 2,

 3

],

 "m66" :

 {

 }

 },

 "mem7" : 123,

 "mem8" : "123"

}

SQL> ROLLBACK;

Rollback complete.

JSON manipulation experiments using T-SQL/JSON of SQL Server

See the documentation at

https://learn.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver17

Experimenting the basic operations on part of JSON objects or arrays

Setting up the experiment

In following the tests are run by SQL Server Express edition 2022

USE JsonDemo;
DROP TABLE T1;
CREATE TABLE T1(
K INT NOT NULL PRIMARY KEY,
J NVARCHAR(MAX), -- Note: the JSON type is not yet available
CONSTRAINT CHK_J_JSON CHECK (ISJSON(J) = 1)
);

For our experiments we insert into table T1 the following contents:

-- Inserting our test documents
-- Note: in T-SQL/JSON key names need to be enclosed in double quotes!

BEGIN TRANSACTION;
-- our basic document without duplicates

INSERT INTO T1 (K, J) VALUES

(1, SYSTOOLS.JSON2BSON('{

 "mem1":123,

 "mem2":"123",

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 25

 "mem3":true,

 "mem4":null,

 "mem5": [123, "123", true, null, [1, 2], {}],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

 }'));

-- document with duplicate keys and elements

INSERT INTO T1 (K, J) VALUES

(2, SYSTOOLS.JSON2BSON('{

 "mem1": 123,

 "mem2": "123",

 "mem3": true,

 "mem4": null,

 "mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} },

 "mem7": 123,

 "mem8": "123"

 }'));

COMMIT;

T-SQL/JSON doesn’t have any pretty print format for JSON, but for example, we can use

JSON_VALUE for simple values by limiting value lengths by LEFT() functions

SELECT LEFT(K, 4) AS K,
 LEFT(JSON_VALUE(J, '$.mem1'), 4) AS mem1,
 LEFT(JSON_VALUE(J, '$.mem2'), 6) AS mem2,
 LEFT(JSON_VALUE(J, '$.mem3'), 6) AS mem3,
 LEFT(JSON_VALUE(J, '$.mem4'), 6) AS mem4,
 LEFT(JSON_VALUE(J, '$.mem5[0]'), 10) AS mem5_0,
 LEFT(JSON_VALUE(J, '$.mem5[4]'), 10) AS mem5_4,
 LEFT(JSON_VALUE(J, '$.mem5[4][1]'), 10) AS mem5_4_1,
 LEFT(JSON_VALUE(J, '$.mem6.m61'), 10) AS mem6_m61,
 LEFT(JSON_VALUE(J, '$.mem6.m66'), 10) AS mem6_m66
FROM T1;

K mem1 mem2 mem3 mem4 mem5_0 mem5_4 mem5_4_1 mem6_m61 mem6_m66
---- ---- ------ ------ ------ ---------- ---------- ---------- ---------- ----------
1 123 string true NULL 123 NULL 2 1 NULL

(1 row affected)

OPENJSON function of T-SQL/JSON
https://www.sqlservertutorial.net/sql-server-json-functions/sql-server-openjson/

Many examples SQL Server documentation use the proprietary function OPENJSON of T-SQL/JSON. OPENJSON

maps JSON text into a set of rows and columns, returning columns: key, value, and type, for each key/value

pair in the JSON.

syntax:
OPENJSON(jsonExpression [, path]) [<with_clause>]
<with_clause> ::= WITH ({ colName type [column_path] [AS JSON] } [,...n])

Optional WITH clause defines an explicit schema, specifying columns, their types, and the JSON path for each

value, allowing load JSON data directly into SQL Server tables.

In following we try to apply the Example 6 - Simple example with JSON content for parsing key/value pairs in

our test JSON.

ALTER DATABASE JsonDemo SET COMPATIBILITY_LEVEL = 130;
DECLARE @json NVARCHAR(MAX);

SELECT @json = J FROM T1 WHERE K=1;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

key value

https://www.sqlservertutorial.net/sql-server-json-functions/sql-server-openjson/

Page 26

-------- ---

mem1 123

mem2 string

mem3 true

mem4 NULL

mem5 [123, "string", true, null, [1, 2], {}]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

(6 rows affected)

DECLARE @json NVARCHAR(MAX);

SELECT @json = J FROM T1 WHERE K=2;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

key value

-------- ---

mem1 123

mem2 123

mem3 true

mem4 NULL

mem5 [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

mem7 123

mem8 123

(8 rows affected)

Surprisingly, in the OPENJSON report above, both the integer value 123 and string value “123” are listed as

integers.

Manipulation tests of our JSON test document:

Accessing JSON objects

Case 1: Adding a new member on top level

EGIN TRANSACTION;
UPDATE T1
SET J = JSON_MODIFY(J, '$.mem7', 'new value')
WHERE K = 1;

(1 row affected)

SELECT LEFT(JSON_VALUE(J, '$.mem7'), 10) AS mem7 FROM T1;
mem7

new value
ROLLBACK;

Case 2.1: Updating value of an existing member found by key

BEGIN TRANSACTION;
UPDATE T1
SET J = JSON_MODIFY(J, '$.mem4', 'new value')
WHERE K = 1;

(1 row affected)

SELECT LEFT(JSON_VALUE(J, '$.mem4'), 10) AS mem4 FROM T1;
mem4

new value

ROLLBACK;

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 27

Case 2.2: Updating value of all existing members found by given value

For this we will use following script, first to the basic test document

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @path NVARCHAR(20);

DECLARE @key NVARCHAR(20);

SELECT @json = J FROM T1 WHERE K=1;

DECLARE cur CURSOR FOR

 SELECT [key]

 FROM OPENJSON(@json)

 WHERE [value] = '123';

OPEN cur;

FETCH NEXT FROM cur INTO @key;

WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @path = CONCAT('$.', @key);

 UPDATE T1 SET J = JSON_MODIFY(J, @path, '124');

 FETCH NEXT FROM cur INTO @key;

 END;

CLOSE cur;

DEALLOCATE cur;

GO

SELECT LEFT(JSON_VALUE(J, '$.mem1'), 10) AS mem1

FROM T1;

(1 row affected)

mem1

124

(1 row affected)

ROLLBACK;

.. and applying it next to JSON document of K 2:

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @path NVARCHAR(20);

DECLARE @key NVARCHAR(20);

SELECT @json = J FROM T1 WHERE K=2;

DECLARE cur CURSOR FOR

 SELECT [key]

 FROM OPENJSON(@json)

 WHERE [value] = '123';

OPEN cur;

FETCH NEXT FROM cur INTO @key;

WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @path = CONCAT('$.', @key);

 UPDATE T1 SET J = JSON_MODIFY(J, @path, '124');

 FETCH NEXT FROM cur INTO @key;

 END;

CLOSE cur;

DEALLOCATE cur;

GO

DECLARE @json NVARCHAR(MAX);

SELECT @json = J FROM T1 WHERE K=2;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

GO

(2 rows affected)

(2 rows affected)

Page 28

(2 rows affected)

(2 rows affected)

key value

-------- ---

mem1 124

mem2 124

mem3 true

mem4 NULL

mem5 [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

mem7 124

mem8 124

(8 rows affected)

ROLLBACK;

Surprisingly beside the integer value 123 of members mem1, mem7 and mem8, this affected also to

string “123” in mem2.

Case 3.1: Deleting an existing member found by key

BEGIN TRANSACTION;

UPDATE T1 SET J = JSON_MODIFY(J, '$.mem1', NULL);

GO

DECLARE @json NVARCHAR(MAX);

SELECT @json = J FROM T1 WHERE K=1;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

GO

(2 rows affected)

key value

-------- ---

mem2 string

mem3 true

mem4 NULL

mem5 [123, "string", true, null, [1, 2], {}]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

(5 rows affected)

ROLLBACK;

Unlike by some other implementations, in T-SQL/JSON setting the value of member to NULL

removes the selected member.

Case 3.2: Deleting ALL existing members found by given value

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @path NVARCHAR(20);

DECLARE @key NVARCHAR(20);

SELECT @json = J FROM T1 WHERE K=2;

DECLARE cur CURSOR FOR

 SELECT [key]

 FROM OPENJSON(@json)

 WHERE [value] = '123';

OPEN cur;

FETCH NEXT FROM cur INTO @key;

WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @path = CONCAT('$.', @key);

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 29

 UPDATE T1 SET J = JSON_MODIFY(J, @path, NULL);

 FETCH NEXT FROM cur INTO @key;

 END;

CLOSE cur;

DEALLOCATE cur;

GO

DECLARE @json NVARCHAR(MAX);

SELECT @json = J FROM T1 WHERE K=2;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

GO

(2 rows affected)

(2 rows affected)

(2 rows affected)

(2 rows affected)

key value

-------- ---

mem3 true

mem4 NULL

mem5 [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

(4 rows affected)

ROLLBACK;

Like in 3.1 the function call of JSON_MODIFY(J, @path, NULL) removed all affected members.

Accessing JSON arrays

Case 4: Adding a new element into an array

BEGIN TRANSACTION;
UPDATE T1
SET J = JSON_MODIFY(J, 'append $.mem6.m65', 4)
WHERE K = 1;

(1 row affected)

SELECT J FROM T1 WHERE K = 1;
J
--
{ "mem1":123, "mem2":"123", "mem3":true, "mem4":null,
 "mem5": [123, "123", true, null, [1, 2], {}],
 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3,4], "m66":{} }
}

(1 row affected)
ROLLBACK;

Case 5.1: Updating value of an existing element found by position

BEGIN TRANSACTION;
UPDATE T1
SET J = JSON_MODIFY(J, '$.mem6.m65[1]', 5)
WHERE K = 1;

(1 row affected)

SELECT J FROM T1 WHERE K = 1;
J
--
{ "mem1":123, "mem2":"123", "mem3":true, "mem4":null,

Page 30

 "mem5": [123, "123", true, null, [1, 2], {}],
 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 5], "m66":{} }
}

(1 row affected)
ROLLBACK;

Case 5.2: Updating value of all existing elements found by value

We test this on the array of mem5 in document K=2, first copying the array contents into temporary

variable @arr5, then replacing all 123 values by value 125, and finally updating the array value of

member mem5 by the modified variable:

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @arr5 NVARCHAR(100);

SELECT @json = J FROM T1 WHERE K=2;

SELECT @arr5 = [value]

FROM OPENJSON(@json) WHERE [key] = 'mem5';

SET @arr5 = REPLACE(@arr5, '123', '125');

UPDATE T1

SET J = JSON_MODIFY(J, '$.mem5', @arr5);

-- verifying the contents

SELECT @json = J FROM T1 WHERE K=2;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

key value

-------- ---

mem1 123

mem2 123

mem3 true

mem4 NULL

mem5 [125, "125", "string", true, 125, 124, 124, null, [1, 2], {}, 125]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

mem7 123

mem8 123

(8 rows affected)

ROLLBACK;

Case 6.1: Deleting an existing element found by position

Our example below, based on solution by Kari Silpiö, will remove the second element (string “123”)

from the array value of member mem5. The general Common Table Expression (CTE) is explained,

for example at https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-

sql?view=sql-server-ver16

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @arr5 NVARCHAR(MAX);

-- Replacing the element [1] by empty string ''

UPDATE T1

SET J = JSON_MODIFY(J, '$.mem5[1]', '')

WHERE K = 2;

-- The '' value is updated as "" which will be as removed as follows

WITH cte (arrayAsString) AS

 (SELECT JSON_QUERY(J, '$.mem5') FROM T1 WHERE K = 2)

SELECT @arr5 = REPLACE(REPLACE(arrayAsString, ',""', ''),', ""', '')

FROM cte;

-- updated @arr5 will now be set back to the document

UPDATE T1

https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 31

SET J = JSON_MODIFY(J, '$.mem5', @arr5);

SELECT @json = J FROM T1 WHERE K=2;

(1 row affected)

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

(2 rows affected)

key value

-------- ---

mem1 123

mem2 123

mem3 true

mem4 NULL

mem5 [123, "string", true, 123, 124, 124, null, [1, 2], {}, 123]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

mem7 123

mem8 123

(8 rows affected)

ROLLBACK;

Note: this did not touch the original null element on the array.

Case 6.2: Deleting all existing elements found by given value

In following we will experiment on deleting all elements of duplicate value 123 in the array of mem5

in our test document K=2

BEGIN TRANSACTION;

DECLARE @json NVARCHAR(MAX);

DECLARE @arr NVARCHAR(MAX);

-- reading the JSON to temporary variable @json

SELECT @json = J FROM T1 WHERE K=2;

-- reading the array value of mem5 temporary variable @arr

SELECT @arr = [value]

FROM OPENJSON(@json) WHERE [key] = 'mem5';

print 'tracing the work on the arr copy:';

print @arr;

-- Replacing elements having value 123 by empty string ''

-- (thus keeping possible null values)

SET @arr = REPLACE(@arr, '123', '');

print @arr;

-- fixing the carbage strings

SET @arr = REPLACE(@arr, '[,', '[');

SET @arr = REPLACE(@arr, '"",', '');

SET @arr = REPLACE(@arr, ', ,', ',');

-- restoring the fixed array as new value of mem5

UPDATE T1

SET J = JSON_MODIFY(J, '$.mem5', @arr)

WHERE K=2;

print 'verifying the contents';

SELECT @json = J FROM T1 WHERE K=2;

SELECT LEFT([key], 8) AS [key], [value]

FROM OPENJSON(@json);

tracing the work on the arr copy:

[123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

[, "", "string", true, , 124, 124, null, [1, 2], {},]

(1 row affected)

verifying the contents

key value

-------- ---

mem1 123

mem2 123

mem3 true

Page 32

mem4 NULL

mem5 ["string", true, 124, 124, null, [1, 2], {},]

mem6 { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

mem7 123

mem8 123

(8 rows affected)

ROLLBACK;

Summary

The missing filter expression implementation makes current T-SQL/JSON quite different for developers, com-

pared with the SQL/JSON implementations of Oracle and PostgreSQL. However, the dedicated OPENJSON

function makes life more easy.

JSON manipulation experiments using pSQL/JSON of PostgreSQL

PostgreSQL community proceeding with the development of the OpenSource edition of the PostgreSQL system

has been innovative extending the relational system with its native JSON implementation in 2012, before ANSI

woke up to need for the SQL/JSON standard. So, the PostgreSQL already had “exotic” JSON manipulation op-

erators of its own, when the ANSI workgroup came in 2014 with their proposal on SQL/JSON query language.

The PostgreSQL community was awake and adapted the SQL/JSON query functions in the SQL language of their

own, including the path expression and filter expressions, with flavours of their own.

For the storage datatype PostgreSQL has both plain textual JSON and binary JSONB with type-sensitive func-

tions of their own and type cast operators “::type” back and forth.

Special JSON extract operators “->” to text value and “->>” to object type add options in its pSQL/JSON dialect

(see NEON’s article).

The result is a “culture shock” for us, developers who have seen PostgreSQL just as an SQL dialect.

Setting up the experiment

In following the tests are run by version 17 of PostgreSQL in Debian 12 VM in which we have created testdb

database.

Using psql client we turn autocommit mode off, create table T1 and insert there our test document as follows

dbtech@debian11:~$ psql testdb
psql (13.18 (Debian 13.18-0+deb11u1))
Type "help" for help.

testdb=# select version();
PostgreSQL 17.5 ...

-- Note: this is case sensitive!
\set AUTOCOMMIT OFF

CREATE TABLE T1(
K INT NOT NULL PRIMARY KEY,
J JSONB);

Note: JSONB is the binary storage solution of PostgreSQL. Benefits of JSONB over the textual JSON solution

are listed, for example, in the “PostgreSQL JSON” tutorial by NEON.

For our experiments we insert into table T1 the following contents:

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 33

-- Row with a simple JSON document without duplicate values

INSERT INTO T1 (K, J) VALUES
(1, '{ "mem1":123, "mem2":"123", "mem3":true, "mem4":null,
 "mem5": [123, "123", true, null, [1, 2], {}],
 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }
}');

-- Row with JSON document with duplicate keys and elements

INSERT INTO T1 (K, J) VALUES

(2, '{ "mem1": 123,

 "mem2": "123",

 "mem3": true,

 "mem4": null,

 "mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],

 "mem6": { "m61":1, "m62":"string", "m63": true, "m64": null, "m65":[2, 3], "m66":{} },

 "mem7": 123,

 "mem8": "123"}');

COMMIT;

Note: PostgreSQL requires JSON key names to be enclosed in double quotes, but numeric values, literals, as

well as array and object values are not quoted.

Reporting whole document contents by pSQL “SELECT * FROM ..” generates an archaic UNIX pager report view

for dump terminals from which view we can get rid only by pressing the key of letter “q” – a shocking case if

you don’t remember the solution. Use of the pager view in pSQL sessions can be turned off by command

testdb=> \pset pager off

Pager usage is off.

A more compact formatting can be obtained by the “composite form” provided by the PostgreSQL JSON func-

tion jsonb_each() as follows:

testdb=# (SELECT (jsonb_each(J)).* FROM T1 WHERE K=1);

...

 key | value

------+---

 mem1 | 123

 mem2 | "123"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", true, null, [1, 2], {}]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

(6 rows)

(EOD)

As default, also this report of the “composite form” would use the pager view.

For shorter reporting, contents of a single member can be generated by the extract operator “->”, for example

“mem1” as follows

testdb=> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 | 123
(1 row)

PostgreSQL JSON functions include also “pretty print” solution, as we demonstrate below on member

“mem5”:

testdb=> SELECT jsonb_pretty(J->'mem5') AS mem5

Page 34

FROM T1 WHERE K=1;
 mem5

 [+
 123, +
 "123",+
 true, +
 null, +
 [+
 1, +
 2 +
], +
 { +
 } +
]
(1 row)

testdb=*>

Accessing JSON objects on top level in the path expression

Case 1: Adding a new member on top level

For this pattern pSQL/JSON has ready functionality

UPDATE T1
SET J = jsonb_set(J, '{mem7}', '"new"')
WHERE K = 1;

testdb=> UPDATE T1
SET J = jsonb_set(J, '{mem7}', '"new"')
WHERE K = 1;
UPDATE 1
testdb=> SELECT K, J -> 'mem7' AS mem7 FROM T1 WHERE K = 1;
 k | mem7
---+-------
 1 | "new"
(1 row)

Case 2.1: Updating value of an existing member found by key

For this pattern pSQL/JSON has ready functionality

UPDATE T1
SET J = jsonb_set(J, '{mem1}', '124')
WHERE K = 1;
--
testdb=*> UPDATE T1
SET J = jsonb_set(J, '{mem1}', '124')
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 | 124
(1 row)

testdb=*> rollback;
ROLLBACK
testdb=> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 | 123
(1 row)

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 35

Case 2.2: Updating value of all existing members found by given value

The JSON structure does not require member values to be unique, so it is possible that multiple members have

accidently the same value.

But let’s start with the simple case assuming that there are no duplicate values.

Searching the key value of the member having the given value, for example ‘123’ can be done as follows

SELECT key FROM T1, json_each(J) WHERE value = '123';

and passing the key to following update

UPDATE T1
SET J = jsonb_set(J, '{key}', '124')
WHERE K = 1;

.. might look something like following

testdb=*> UPDATE T1 SET J = jsonb_set(J,
 '{(SELECT key::jsonb FROM T1, json_each(T1.J::jsonb)
 WHERE value::jsonb = 123)}', '124', true)
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 | 123
(1 row)

testdb=*> rollback;
ROLLBACK

So, the update has failed, even if PostgreSQL seems to accept the statement. The embedded SELECT state-

ment in the quoted expression is not a legal jsonb path expression and just gets ignored.

The problem can be solved by forcing the SELECT statement string to be evaluated as an object by concat func-

tion as follows

testdb=> SELECT concat('{',(SELECT key

 FROM T1, jsonb_each(T1.J)

 WHERE K=1 AND value = '123'),'}');

 concat

 {mem1}

(1 row)

and applying this in array for the path expression of the jsonb_set by the concat function

testdb=> UPDATE T1

SET J = jsonb_set(J,

 concat('{',(SELECT key

 FROM T1, jsonb_each(T1.J)

 WHERE K=1 AND value = '123'),'}')::text[],

 '124'::jsonb,

 true)

WHERE K=1;

UPDATE 1

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=1) as dummy

WHERE value IN ('123','124');

 key | value

Page 36

------+-------

 mem1 | 124

(1 row)

testdb=*> rollback;
ROLLBACK

So, this works in case of a unique value.

Next, we test the case of duplicate values using the slightly modified version of our test document of value 2

for the key K where the JSON column has multiple members having the same value 123. Note that in JSON the

integer value 123 is different than the string value “123”. Following query refreshes now the contents for us

(SELECT (jsonb_each(J)).* FROM T1 WHERE K=2);

 key | value

------+---

 mem1 | 123

 mem2 | "string"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

 mem7 | 123

 mem8 | "123"

(8 rows)

Applying now the same UPDATE statement raises ERROR

testdb=*> UPDATE T1

SET J = jsonb_set(J,

 concat('{',(SELECT key

 FROM T1, jsonb_each(T1.J)

 WHERE K=2 AND value = '123'),'}')::text[],

 '124'::jsonb,

 true)

WHERE K=2;

ERROR: more than one row returned by a subquery used as an expression

testdb=!> rollback;
ROLLBACK

The problem is that the embedded SELECT now returns two tuples, not one, so the concat function fails since it

is no longer concatenating a single string. There is no way to have jsonb_set update more than one value

at a time.

The best alternative is to update one key at a time, using a loop in a PL/pgSQL function in which we pass data

via local variables between SQL statements, as shown below.

testdb=> CREATE OR REPLACE FUNCTION

 update_values_in_T1J(doc_no integer,

 oldvalue jsonb,

 newvalue jsonb,

 countlimit integer default 2147483647

) RETURNS void AS $$

 DECLARE akey text;

 BEGIN

 FOR akey IN

 SELECT * FROM

 (SELECT key from

 (SELECT (jsonb_each(J)).* FROM T1 WHERE K = doc_no) as dummy1

 WHERE value = oldvalue

 LIMIT countlimit) AS dummy1

 ORDER BY key ASC

 LOOP

 UPDATE T1

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 37

 SET J = jsonb_set((SELECT J FROM T1 WHERE K=doc_no),

 concat('{',akey,'}')::text[],

 newvalue)

 WHERE K=doc_no;

 END LOOP;

 RETURN;

 END;

 $$ LANGUAGE plpgsql;

CREATE FUNCTION

testdb=*> COMMIT;

COMMIT

By the optional parameter countlimit we pass value to LIMIT on keys selected by the SELECT scanning mem-

bers of the given oldvalue, to be included in the IN list of member keys to be passed then to the LOOP of UP-

DATE statements.

Applying this to the case of no duplicates, in the row of K=1:

testdb=> SELECT update_values_in_T1J (1, '123', '456');

 update_values_in_t1j

(1 row)

testdb=*> (SELECT (jsonb_each(J)).* FROM T1 WHERE K=1);

 key | value

------+---

 mem1 | 456

 mem2 | "string"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

(6 rows)testdb=*> (SELECT (jsonb_each(J)).* FROM T1 WHERE K=2);

Applying this to the case of multiple duplicates, in the row of K=2:

testdb=*> SELECT update_values_in_T1J (2, '123', '456');

 update_values_in_t1j

(1 row)

testdb=*> (SELECT (jsonb_each(J)).* FROM T1 WHERE K=2);

 key | value

------+---

 mem1 | 456

 mem2 | "string"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

 mem7 | 456

 mem8 | "123"

(8 rows)

Note finally that this function works for any values, not just integers.

testdb=*> SELECT update_values_in_T1J (2, '123','[1,2,3]');

 update_values_in_t1j

(1 row)

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

Page 38

 FROM T1

 WHERE K=2) as dummy

WHERE value IN ('123','124','[1,2,3]');

 key | value

------+-----------

 mem1 | [1, 2, 3]

 mem7 | 124

(2 rows)

testdb=*> SELECT update_values_in_T1J (2, '[1,2,3]','123');

 update_values_in_t1j

(1 row)

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=2) as dummy

WHERE value IN ('123','124','[1,2,3]');

 key | value

------+-------

 mem1 | 123

 mem7 | 124

(2 rows)

testdb=*> rollback;

ROLLBACK

testdb=>

So, our function above provides a proper pattern for updating value of existing members having the given

value.

Case 3.1: Deleting an existing member found by key

For this pattern pSQL/JSON has ready functionality

testdb=> UPDATE T1 SET J = J - 'mem1' WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 |
(1 row)

testdb=*> ROLLBACK;
ROLLBACK
testdb=> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;
 k | mem1
---+------
 1 | 123
(1 row)

testdb=*> ROLLBACK;
ROLLBACK

Case 3.2: Deleting all existing members found by given value

Example deleting member having value 123 on JSON without duplicates, K = 1:

testdb=> UPDATE T1 SET J = J -
 (SELECT key FROM T1, jsonb_each(J::jsonb)
 WHERE value = '123')
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem1' AS mem1 FROM T1 WHERE K = 1;

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 39

 k | mem1
---+------
 1 |
(1 row)

Trying to apply this to members of duplicate value, K= 2:

Testdb*> UPDATE T1 SET J = J -

 (SELECT key FROM T1, jsonb_each(J::jsonb)

 WHERE value = '123')

WHERE K = 2;

ERROR: more than one row returned by a subquery used as an expression

testdb=!> ROLLBACK;
ROLLBACK
testdb=>

To solve the issue, we modify a new version of the PL/pgSQL function “update_values_in_T1J” as follows

CREATE OR REPLACE FUNCTION

 remove_members_in_T1J (doc_no integer,

 givenvalue jsonb,

 countlimit integer default 2147483647

) RETURNS void AS $$

 DECLARE akey text;

 BEGIN

 FOR akey IN

 SELECT * FROM

 (SELECT key from

 (SELECT (jsonb_each(J)).* FROM T1 WHERE K = doc_no) as dummy1

 WHERE value = givenvalue

 LIMIT countlimit) AS dummy1

 ORDER BY key ASC

 LOOP

 UPDATE T1

 SET J = J - akey

 WHERE K = doc_no;

 END LOOP;

 RETURN;

 END;

 $$ LANGUAGE plpgsql;

COMMIT;

Experimenting with the JSON document without duplicates, K= 1

testdb=> SELECT remove_members_in_T1J (1, '123');

 remove_members_in_t1j

(1 row)

testdb=*> SELECT (jsonb_each(J)).* FROM T1 WHERE K = 1;

 key | value

------+---

 mem2 | "123"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

(5 rows)

Experimenting with the JSON document of duplicates, K= 2

testdb=*> SELECT remove_members_in_T1J (2, '123');

 remove_members_in_t1j

Page 40

(1 row)

testdb=*> SELECT (jsonb_each(J)).* FROM T1 WHERE K = 2;

 key | value

------+---

 mem2 | "123"

 mem3 | true

 mem4 | null

 mem5 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

 mem6 | {"m61": 1, "m62": "string", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}

 mem8 | "123"

(6 rows)

testdb=*> ROLLBACK;
ROLLBACK
testdb=>

So, this works on both cases, and is a working pattern for the case of “Deleting all existing members found by

given value”.

Accessing JSON arrays

Case 4: Adding a new element

For this pattern pSQL/JSON has ready functionality

testdb=> UPDATE T1
SET J = jsonb_set(J, '{mem5}', J->'mem5' || '124')
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;
 k | mem5
---+--
 1 | [123, "123", true, null, [1, 2], {}, 124]
(1 row)

testdb=*> ROLLBACK;
ROLLBACK

Case 5.1: Updating value of an existing element found by position

Using the simple path expression {mem5,0} we access the first element in the array of member mem5

testdb=> UPDATE T1
SET J = jsonb_set(J, '{mem5,0}', '124')
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;
 k | mem5
---+---
 1 | [124, "123", true, null, [1, 2], {}]
(1 row)

testdb=*> ROLLBACK;
ROLLBACK
testdb=>

Case 5.2: Updating value of all existing elements found by value

The JSON structure does not require element values in an array to be unique, so it is possible to have multiple

duplicate values in the same array. However, let’s start with the simple case assuming that there are no dupli-

cate values.

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 41

Trying to apply similar solution as Case 2.2 "Updating value of an existing members found by given value"

first applying the following "Updating value found by position" for the first element “123” of member mem5 to

the new value “124”:

testdb=> UPDATE T1

SET J = jsonb_set(J,

 concat('{mem5,',

 (SELECT ordinality::integer -1 AS index

 FROM T1, jsonb_array_elements(J->'mem5')

 WITH ORDINALITY

 WHERE value = '123'), ' }')::text[],

 '124')

WHERE K = 1;

ERROR: malformed array literal: "{mem5, }"

DETAIL: Unexpected "}" character.

testdb=!> rollback;

ROLLBACK

Unfortunately, this has the same drawback as the one for Case 2.2; namely, it does not work when there is

more than one value to be updated.

It furthermore fails when there are no values to update.

testdb=> UPDATE T1

SET J = jsonb_set(J,

 concat('{mem5,',

 (SELECT ordinality::integer -1 AS index

 FROM T1, jsonb_array_elements(J->'mem5')

 WITH ORDINALITY

 WHERE value = '125'), ' }')::text[],

 '124')

WHERE K = 1;

ERROR: malformed array literal: "{mem5, }"

DETAIL: Unexpected "}" character.

testdb=!> rollback;

ROLLBACK

Two solutions which avoid these limitations are presented. The first converts the JSONB array to an ordinary

PostgreSQL array, performs the deletion operation there, and then converts back to a JSONB array.

testdb=> UPDATE T1

 SET J = jsonb_set(J,

 '{mem5}',

 (SELECT array_to_json(

 array_replace(

 array(SELECT jsonb_array_elements((J->'mem5'))),

 '123'::jsonb,

 '124'::jsonb))

 FROM T1 WHERE K=1)::jsonb

)

WHERE K=1;

UPDATE 1

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=1) as dummy

WHERE key='mem5';

 key | value

------+---

 mem5 | [124, "123", true, null, [1, 2], {}]

(1 row)

So, this works, as well as applied to case of multiple duplicates in K=2

testdb=*> UPDATE T1

SET J = jsonb_set(J,

 '{mem5}',

Page 42

 (SELECT array_to_json(

 array_replace(

 array(SELECT jsonb_array_elements((J->'mem5'))),

 '123'::jsonb,

 '124'::jsonb))

 FROM T1 WHERE K=2)::jsonb

)

WHERE K=2;

UPDATE 1

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=2) as dummy

WHERE key='mem5';

 key | value

------+--

 mem5 | [124, "123", "string", true, 124, 124, 124, null, [1, 2], {}, 124]

(1 row)

testdb=*> ROLLBACK;

ROLLBACK

The second solution employs a PL/pgSQL function, experimented with the duplicate elements in document of

K=2 as follows:

testdb=> CREATE OR REPLACE FUNCTION

 replace_in_array_of_T1J (doc_no integer,

 jkey text,

 jexpr jsonb,

 newvalue jsonb,

 countlimit integer default 2147483647)

 RETURNS void AS $$

 DECLARE eposition integer;

 BEGIN

 FOR eposition IN

 SELECT ordinality::integer

 FROM T1, jsonb_array_elements(J->jkey) WITH ORDINALITY

 WHERE K=doc_no AND value = jexpr

 LIMIT countlimit

 LOOP

 UPDATE T1

 SET J = jsonb_set(J, concat('{',jkey,',',eposition-1,'}')::text[],

 newvalue)

 WHERE K = doc_no;

 RAISE NOTICE 'Entry in position % of % replaced.', eposition, jkey;

 END LOOP;

 RETURN;

 END;

 $$ LANGUAGE plpgsql;

testdb=*> COMMIT;

COMMIT

testdb=> SELECT replace_in_array_of_T1J (1, 'mem5','123','124');

NOTICE: Entry in position 1 of mem5 replaced.

 replace_in_array_of_t1j

(1 row)

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=1) as dummy

WHERE key='mem5';

 key | value

------+--------------------------------------

 mem5 | [124, "123", true, null, [1, 2], {}]

(1 row)

testdb=*>

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 43

SELECT replace_in_array_of_T1J (2, 'mem5','123','124');

SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=2) as dummy

WHERE key='mem5';

SELECT replace_in_array_of_T1J (2,'mem5','123','124',1);

SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;

testdb=*> SELECT replace_in_array_of_T1J (2, 'mem5','123','124');

NOTICE: Entry in position 1 of mem5 replaced.

NOTICE: Entry in position 5 of mem5 replaced.

NOTICE: Entry in position 11 of mem5 replaced.

 replace_in_array_of_t1j

(1 row)

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=2) as dummy

WHERE key='mem5';

 key | value

------+--

 mem5 | [124, "123", "string", true, 124, 124, 124, null, [1, 2], {}, 124]

(1 row)

testdb=*>

testdb=!> rollback;

ROLLBACK

The optional argument for countlimit limits the number of values which are replaced:

testdb=> SELECT replace_in_array_of_T1J (2,'mem5','123','124',1);

NOTICE: Entry in position 1 of mem5 replaced.

 replace_in_array_of_t1j

(1 row)

testdb=*> SELECT *

FROM (SELECT (jsonb_each(J)).*

 FROM T1

 WHERE K=1) as dummy

WHERE key='mem5';

 key | value

------+---

 mem5 | [124, "string", true, 123, null, [1, 2], {}, 123]

(1 row)

testdb=*>

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;
 k | mem5
---+---
 1 | [123, "123", true, 123, 124, 124, null, [1, 2], {}, 123]
(1 row)

testdb=*> select remove_from_mem5 (2, '123');
NOTICE: Entry in position 1 of mem5 removed.
 remove_from_mem5

Page 44

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;
 k | mem5
---+--
 1 | ["123", true, 123, 124, 124, null, [1, 2], {}, 123]
(1 row)

testdb=*>
testdb=!> ROLLBACK;

ROLLBACK

Case 6.1: Deleting an existing element found by position

For this pattern pSQL/JSON has ready functionality with which experiment by deleting the first ele-

ment (note: JSON arrays are 0-indexed) from the array value of member mem5:

testdb=> UPDATE T1
SET J = jsonb_set(J, '{mem5}',
 (J->'mem5')::jsonb - 0)
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;
 k | mem5
---+------------------------------------
 1 | ["123", true, null, [1, 2], {}]
(1 row)

testdb=*> rollback;
ROLLBACK
testdb=>

Case 6.2: Deleting all existing elements found by given value

Let’s start experimenting with the case of no duplicates, K=1

This is a tricky issue, for example if we try to delete the integer element 123

testdb=> UPDATE T1
SET J = jsonb_set(J, '{mem5}',
 (J->'mem5')::jsonb - '123')
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;
 k | mem5
---+---
 1 | [123, "123", true, null, [1, 2], {}]
(1 row)

testdb=*> rollback;
ROLLBACK
testdb=>

Even if we did not get error message, this delete failed since value '123' in this context means a string value

while literal 123 is assumed to present an index value.

Next, we try filter solution to find the array index of the element to be deleted:

testdb=*> SELECT ordinality -1 AS index
FROM T1, jsonb_array_elements(J->'mem5') WITH ORDINALITY
WHERE value = '123';
 index

 0
(1 row)

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 45

and embedding this to our UPDATE

testdb=*> UPDATE T1
SET J = jsonb_set(J, '{mem5}',
 (J->'mem5')::jsonb -
 (SELECT ordinality -1 AS index
 FROM T1, jsonb_array_elements(J->'mem5') WITH ORDINALITY
 WHERE value = '123'
)::integer)
WHERE K = 1;
UPDATE 1
testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;
 k | mem5
---+------------------------------------
 1 | ["123", true, null, [1, 2], {}]
(1 row)

testdb=*> ROLLBACK;
ROLLBACK
testdb=>

Voila, it worked! However, following solution is more general translating a JSONB array to a

PostgreSQL array and back

testdb=> UPDATE T1

 SET J = jsonb_set(J,

 '{mem5}',

 (SELECT array_to_json(

 array_remove(

 array(SELECT jsonb_array_elements((J->'mem5'))),

 '123'::jsonb))

 FROM T1 WHERE K=1)::jsonb

)

WHERE K=1;

UPDATE 1

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;

 k | mem5

---+---------------------------------

 1 | ["123", true, null, [1, 2], {}]

(1 row)

testdb=*> rollback;

ROLLBACK

testdb=>

A proper pattern needs to work for documents with duplicate elements.
Here is one which is similar to the PL/pgsql solution for Case 5.2.

testdb=> CREATE OR REPLACE FUNCTION

 remove_from_array_of_T1J (doc_no integer,

 jkey text,

 jexpr jsonb,

 countlimit integer default 2147483647)

 RETURNS void AS $$

 DECLARE eposition integer;

 BEGIN

 FOR eposition IN

 SELECT ordinality::integer

 FROM T1, jsonb_array_elements(J->jkey) WITH ORDINALITY

 WHERE K=doc_no AND value = jexpr

 ORDER BY ordinality DESC

 LIMIT countlimit

 LOOP

 UPDATE T1

 SET J = jsonb_set(J,

Page 46

 concat('{',jkey,'}')::text[],

 (J->jkey)::jsonb - (eposition-1))

 WHERE K = doc_no;

 RAISE NOTICE 'Entry in position % of % removed.', eposition, jkey;

 END LOOP;

 RETURN;

 END;

 $$ LANGUAGE plpgsql;

CREATE FUNCTION

testdb=*> COMMIT;

COMMIT

testdb=>

testdb=> SELECT remove_from_array_of_T1J (1, 'mem5','123');

NOTICE: Entry in position 1 of mem5 removed.

 remove_from_array_of_t1j

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 1;

 k | mem5

---+---------------------------------

 1 | ["123", true, null, [1, 2], {}]

(1 row)

testdb=*> SELECT remove_from_array_of_T1J (2, 'mem5','123');

NOTICE: Entry in position 11 of mem5 removed.

NOTICE: Entry in position 5 of mem5 removed.

NOTICE: Entry in position 1 of mem5 removed.

 remove_from_array_of_t1j

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;

 k | mem5

---+---

 2 | ["123", "string", true, 124, 124, null, [1, 2], {}]

(1 row)

testdb=*>

As for the function replace_in_array_of_T1J for Case 5.2, this function has an optional argument

which limits the number of replacements. Let’s first see the original contents and then apply the

function

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;

 k | mem5

---+--

 2 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

(1 row)

testdb=> SELECT remove_from_array_of_T1J (2,'mem5','123',1);

NOTICE: Entry in position 11 of mem5 removed.

 remove_from_array_of_t1j

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;

 k | mem5

---+---

 2 | [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}]

(1 row)

testdb=*> rollback;

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 47

ROLLBACK

Note: By the ORDER BY .. DESC the function removed the last matching element and changing the

order to ASC the function would remove the first matching element.

testdb=*> SELECT remove_from_array_of_T1J (2, 'mem5','123', 1);

NOTICE: Entry in position 1 of mem5 removed.

 remove_from_array_of_t1j

(1 row)

testdb=*> SELECT K, J -> 'mem5' AS mem5 FROM T1 WHERE K = 2;

 k | mem5

---+---

 2 | ["123", "string", true, 123, 124, 124, null, [1, 2], {}, 123]

(1 row)

testdb=*> rollback;

ROLLBACK

JSON manipulation experiments using SQL/JSON of MySQL/MariaDB

A brief history

Before entering the experiments with MySQL/MariaDB JSON, we’d like to look back in history and the

impact of MySQL on our DBTechLab tutorials for DBTechNet workshops. We do owe a lot to the works

of Open Source legends Linus Torvalds, Monty Widenius and Heikki Tuuri, who started their careers on

Helsinki area in the nineties. The Linux movement started by Linus, and Oracle’s VirtualBox platform

have enabled the cross university “laboratory” platform for our workshops and shared materials. In 99

Monty appeared in our workshop at Haaga-Helia on SQL-99 by Ocelot4 praising his MySQL, a real “No

SQL” database of hobbyists at that time, on performance due to missing transaction processing facili-

ties, while he was in fact interested in hiring the Ocelot people. Soon MySQL was switched into a SQL

engine and its database engine was replaced by InnoDB engine of Heikki Tuuri to use transactions. After

Oracle acquired MySQL and InnoDB, Monty’s new team has continued development of the pure Open

Source version of MySQL code as MariaDB. It is great that both of these versions now continue on top of

the development of database technologies, including SQL/JSON.

Comparing JSON implementations of MySQL and MariaDB

A difference between MySQL and MariaDB is that while MySQL implements native JSON data type
defined in RFC 7159 (Petkovic, 2020). The JSON data type of MariaDB is just an alias name for LONG-
TEXT COLLATE utf8mb4_bin. However, the JSON alias includes automatically JSON_VALID function
as its CHECK constraint.

Following Table 1.1 of JSON functions has been built based on documentation on web sites of both
products. Marking by “Y” means “listed”, “y” found but not listed, while blank means that the func-
tion has not found in the documentation, so the list is not accurate and the function may be imple-
mented already but not yet documented, or may be implemented in future. This indicates the fast
development on the technology and versions.

Table 1.1 List of JSON functions in MySQL and/or MariaDB

4 Peter Gulutzan & Trudy Pelzer, the authors of the book “SQL-99 Complete, Really”

Page 48

JSON functions of MySQL MariaDB

JSON_ARRAY Y Y

JSON_ARRAY_AGG Y JSON_ARRAYAGG

JSON_ARRAY_APPEND Y Y

JSON_ARRAY_INSERT Y Y

JSON_ARRAY_INTERSECT Y

JSON_COMPACT Y

JSON_CONTAINS Y Y

JSON_CONTAINS_PATH Y Y

JSON_DEPTH Y

JSON_DETAILED Y

JSON_EQUALS Y

JSON_EXISTS Y

JSON_EXTRACT Y Y

JSON_INSERT Y Y

JSON_KEYS Y Y

JSON_KEY_VALUE Y

JSON_LENGTH Y

JSON_LOOSE Y

JSON_MERGE Y

JSON_MERGE_PATCH Y

JSON_MERGE_PRESERVE Y

JSON_NORMALIZE Y

JSON_OBJECT Y Y

JSON_OBJECT_AGG Y JSON_OBJECTAGG

JSON_OBJECT_FILTER_KEYS Y

JSON_OBJECT_TO_ARRAY Y

JSON_OVERLAPS Y Y

JSON_PRETTY Y

JSON_QUERY Y

JSON_QUOTE Y

JSON_REMOVE y y

JSON_REPLACE Y y

JSON_SEARCH Y Y

JSON_SET Y

JSON_TABLE Y y

JSON_TYPE Y Y

JSON_UNQUOTE Y Y

JSON_VALID Y Y

JSON_VALUE Y Y

value MEMBER OF Y

The SQL/JSON experiments below are run using MariaDB 11.8.2 server on Windows 11 desktop.

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 49

Setting up the experiment

MariaDB [(none)]> use testdb

Database changed

MariaDB [testdb]>

USE Testdb;

DROP TABLE T1;

CREATE TABLE T1(

K INT NOT NULL PRIMARY KEY,

J JSON);

-- Inserting our test documents

-- Note: in T-SQL/JSON key names need to be enclosed in double quotes!

START TRANSACTION;

DELETE FROM T1;

-- our basic document without duplicates

INSERT INTO T1 (K, J) VALUES

(1, '{

 "mem1":123,

 "mem2":"123",

 "mem3":true,

 "mem4":null,

 "mem5": [123, "123", true, null, [1, 2], {}],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

 }');

-- document with duplicate keys and elements

INSERT INTO T1 (K, J) VALUES

(2, '{

 "mem1": 123,

 "mem2": "123",

 "mem3": true,

 "mem4": null,

 "mem5": [123, "123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} },

 "mem7": 123,

 "mem8": "123"

 }');

COMMIT;

-- Duplicate members?

INSERT INTO T1 (K, J) VALUES

(3, '{ "mem1":123, "mem1":124 }');

SELECT LEFT(K, 4) AS K, LEFT(JSON_VALUE(J, '$.mem1'), 4) AS mem1

FROM T1 WHERE K=3;

MariaDB [testdb]> -- Duplicate members?

MariaDB [testdb]> INSERT INTO T1 (K, J) VALUES

 -> (3, '{ "mem1":123, "mem1":124 }');

Query OK, 1 row affected (0.001 sec)

MariaDB [testdb]>

MariaDB [testdb]> SELECT LEFT(K, 4) AS K, LEFT(JSON_VALUE(J, '$.mem1'), 4) AS mem1

 -> FROM T1 WHERE K=3;

+------+------+

| K | mem1 |

+------+------+

| 3 | 123 |

+------+------+

1 row in set (0.000 sec)

Some querying models
Beside the SQL/JSON reporting functions, simple SELECT

MariaDB [testdb]> SELECT J FROM T1 WHERE K=1;

+---

Page 50

| J

+---

| {

 "mem1":123,

 "mem2":"123",

 "mem3":true,

 "mem4":null,

 "mem5": [123, "123", true, null, [1, 2], {}],

 "mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }

 } |

+---

1 row in set (0.001 sec)

or pretty-print of JSON documents

MariaDB [testdb]> SELECT JSON_PRETTY(J) FROM T1 WHERE K=1;

+--

JSON_PRETTY(J)

+--

| {

 "mem1": 123,

 "mem2": "123",

 "mem3": true,

 "mem4": "new value",

 "mem5":

 [

 123,

 "123",

 true,

 null,

 [

 1,

 2

],

 {

 }

],

 "mem6":

 {

 "m61": 1,

 "m62": "123",

 "m63": true,

 "m64": null,

 "m65":

 [

 2,

 3

],

 "m66":

 {

 }

 }

} |

+--

1 row in set (0.001 sec)

and following functions are available

JSON_KEYES()

MariaDB [testdb]> SELECT JSON_KEYS(J) FROM T1 WHERE K= 1;

+--+

| JSON_KEYS(J) |

+--+

| ["mem1", "mem2", "mem3", "mem4", "mem5", "mem6"] |

+--+

1 row in set (0.001 sec)

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 51

JSON_EXTRACT()

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem5') FROM T1 WHERE K=1;

+--------------------------------------+

| JSON_EXTRACT(J, '$.mem5') |

+--------------------------------------+

| [123, "123", true, null, [1, 2], {}] |

+--------------------------------------+

1 row in set (0.000 sec)

Accessing JSON objects

Case 1: Adding a new member on top level

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_SET(J, '$.mem7', 'new value')

 -> WHERE K = 1;

Query OK, 1 row affected (0.001 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> --

MariaDB [testdb]> SELECT LEFT(JSON_VALUE(J, '$.mem7'), 10) AS mem7

 -> FROM T1 WHERE K = 1;

+-----------+

| mem7 |

+-----------+

| new value |

+-----------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.001 sec)

Case 2.1: Updating value of an existing member found by key

a)

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_SET(J, '$.mem4', 'new value')

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem4') AS mem4 FROM T1 WHERE K = 1;

+-----------+

| mem4 |

+-----------+

| new value |

+-----------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.014 sec)

b) as synonym of JSON_SET() MySQL and MariaDB have JSON_REPLACE()

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_REPLACE(J, '$.mem4', 'new value')

Page 52

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem4') AS mem4 FROM T1 WHERE K = 1;

+-------------+

| mem4 |

+-------------+

| "new value" |

+-------------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.001 sec)

Case 2.2: Updating value of all existing members found by given value

This “ALL operation” has proven to be difficult. As temporary solution we built the logic of the pat-

tern into following MariaDB SQL procedure tailored just for record K=1 in our table T1. Also writing

a more general-purpose procedure proved to be challenging and the generalization has now been

left out scope of our paper.

drop procedure UpdMembersOfGivenValue;

DELIMITER //

CREATE PROCEDURE UpdMembersOfGivenValue(

 IN json_data JSON,

 IN given_value VARCHAR(255),

 IN new_value VARCHAR(255))

BEGIN

 DECLARE key_name VARCHAR(255);

 DECLARE value VARCHAR(255);

 DECLARE path VARCHAR(255);

 DECLARE idx INT DEFAULT 0;

 DECLARE total_keys INT;

 SET @keys = JSON_KEYS(json_data);

 SET total_keys = JSON_LENGTH(@keys);

 WHILE idx < total_keys DO

 SET key_name = JSON_UNQUOTE(JSON_EXTRACT(@keys, CONCAT('$[', idx, ']')));

 SET path = CONCAT('$.', key_name);

 SET value = JSON_VALUE(json_data, path);

 CASE value

 WHEN given_value THEN

 UPDATE T1

 SET J = JSON_SET(J, path, new_value)

 WHERE K = 1;

 ELSE BEGIN END;

 END CASE;

 SET idx = idx + 1;

 END WHILE;

END;

//

DELIMITER ;

Test run as follows

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL UpdMembersOfGivenValue(1, (SELECT J FROM T1 WHERE K=1), 123, 127);

+--------+-------------+-------+

| path | given_value | value |

+--------+-------------+-------+

| $.mem1 | 123 | 123 |

+--------+-------------+-------+

1 row in set (0.002 sec)

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 53

+--------+-------------+-------+

| path | given_value | value |

+--------+-------------+-------+

| $.mem2 | 123 | 123 |

+--------+-------------+-------+

1 row in set (0.004 sec)

Query OK, 2 rows affected (0.006 sec)

MariaDB [testdb]> SELECT * FROM T1 WHERE K=1;

+---+---

| K | J

+---+---

| 1 | {"mem1": "127", "mem2": "127", "mem3": true, "mem4": null, "mem5": [123, "123", true,

null, [1, 2], {}], "mem6": {"m61": 1, "m62": "123", "m63": true, "m64": null, "m65": [2, 3],

"m66": {}}} |

+---+---

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.000 sec)

Case 3.1: Deleting an existing member found by key

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1 SET J = JSON_REMOVE(J, '$.mem1')

 -> WHERE K=1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_KEYS(J) FROM T1 WHERE K= 1;

+--+

| JSON_KEYS(J) |

+--+

| ["mem2", "mem3", "mem4", "mem5", "mem6"] |

+--+

1 row in set (0.000 sec)

MariaDB [testdb]> SELECT LEFT(JSON_VALUE(J, '$.mem1'), 10) AS mem1

 -> FROM T1 WHERE K=1;

+------+

| mem1 |

+------+

| NULL |

+------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.013 sec)

Case 3.2: Deleting all existing members found by given value

Solved by modification from Case 2.2 solution

drop procedure DelMembersOfGivenValue;

DELIMITER //

CREATE PROCEDURE DelMembersOfGivenValue(

 IN json_data JSON,

 IN given_value VARCHAR(255),

 IN new_value VARCHAR(255))

BEGIN

 DECLARE key_name VARCHAR(255);

Page 54

 DECLARE value VARCHAR(255);

 DECLARE path VARCHAR(255);

 DECLARE idx INT DEFAULT 0;

 DECLARE total_keys INT;

 SET @keys = JSON_KEYS(json_data);

 SET total_keys = JSON_LENGTH(@keys);

 WHILE idx < total_keys DO

 SET key_name = JSON_UNQUOTE(JSON_EXTRACT(@keys, CONCAT('$[', idx, ']')));

 SET path = CONCAT('$.', key_name);

 SET value = JSON_VALUE(json_data, path);

 CASE value

 WHEN given_value THEN

 SELECT path, given_value, value;

 UPDATE T1

 SET J = JSON_REMOVE(J, path)

 WHERE K = 1;

 ELSE BEGIN END;

 END CASE;

 SET idx = idx + 1;

 END WHILE;

END;

//

DELIMITER ;

START TRANSACTION;

CALL DelMembersOfGivenValue((SELECT J FROM T1 WHERE K=1), 123, 127);

SELECT * FROM T1 WHERE K=1;

ROLLBACK;

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL DelMembersOfGivenValue((SELECT J FROM T1 WHERE K=1), 123, 127);

+--------+-------------+-------+

| path | given_value | value |

+--------+-------------+-------+

| $.mem1 | 123 | 123 |

+--------+-------------+-------+

1 row in set (0.001 sec)

+--------+-------------+-------+

| path | given_value | value |

+--------+-------------+-------+

| $.mem2 | 123 | 123 |

+--------+-------------+-------+

1 row in set (0.002 sec)

Query OK, 2 rows affected (0.004 sec)

MariaDB [testdb]> SELECT * FROM T1 WHERE K=1;

+---+---

| K | J |

+---+---

| 1 | {"mem3": true, "mem4": null, "mem5": [123, "123", true, null, [1, 2], {}], "mem6":

{"m61": 1, "m62": "123", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}} |

+---+---

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.001 sec)

Accessing JSON arrays

Case 4: Adding a new element into an array

Petkovic (2020) reports of following MySQL functions for inserting new element into a JSON array

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 55

a) to insert new value in given position
JSON_ARRAY_INSERT(jdoc, ‘$.member[position]’, “value”)

b) to append the new value at the end of the array
JSON_ARRAY_APPEND(jdoc, ‘$.member’, “newvalue”)

In following we apply these to our MariaDB basic document

a)

START TRANSACTION;

UPDATE T1

SET J = JSON_ARRAY_INSERT(J, '$.mem5[6]', 6)

WHERE K = 1;

SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

ROLLBACK;

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_ARRAY_INSERT(J, '$.mem5[6]', 6)

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

+---+

| mem5 |

+---+

| [123, "123", true, null, [1, 2], {}, 6] |

+---+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.013 sec)

b)

START TRANSACTION;

UPDATE T1

SET J = JSON_ARRAY_APPEND(J, '$.mem5', 5)

WHERE K = 1;

SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

ROLLBACK;

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_ARRAY_APPEND(J, '$.mem5', 5)

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

+---+

| mem5 |

+---+

| [123, "123", true, null, [1, 2], {}, 5] |

+---+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.001 sec)

Case 5.1: Updating value of an existing element found by position

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

Page 56

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_SET(J, '$.mem5[1]', "125")

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

+--------------------------------------+

| mem5 |

+--------------------------------------+

| [123, "125", true, null, [1, 2], {}] |

+--------------------------------------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.000 sec)

Case 5.2: Updating value of all existing elements found by value

We have not found direct functions for this pattern, but MariaDB’s stored procedure language provides means

for implementing the needed logic steps as follows. The code contains temporary indented “select” state-

ments for tracing the steps.

drop procedure UpdElementsOfGivenValue;

DELIMITER //

CREATE PROCEDURE UpdElementsOfGivenValue(

 IN json_data JSON,

 IN member_key VARCHAR(255),

 IN given_value VARCHAR(255),

 IN new_value VARCHAR(255))

BEGIN

 DECLARE value VARCHAR(255);

 DECLARE path VARCHAR(255);

 DECLARE array VARCHAR(255);

 DECLARE idx INT DEFAULT 0;

 DECLARE total_elems INT;

 SET path = CONCAT('$.', member_key, '[*]');

 select path;

 SET array = JSON_EXTRACT(json_data, path);

 select array;

 SET total_elems = JSON_LENGTH(array); -- ?

 select total_elems;

 -- Loop through each key

 WHILE idx < total_elems DO

 SET path = CONCAT('$.', member_key, '[', idx, ']') ;

 SET value = JSON_EXTRACT(json_data, path);

 CASE value

 WHEN given_value THEN

 select path, given_value, value;

 UPDATE T1

 SET J = JSON_SET(J, path, new_value)

 WHERE K = 1;

 ELSE BEGIN END;

 END CASE;

 SET idx = idx + 1;

 END WHILE;

END;

//

DELIMITER ;

START TRANSACTION;

CALL UpdElementsOfGivenValue((SELECT J FROM T1 WHERE K=1), 'mem5', 123, 127);

SELECT * FROM T1 WHERE K=1;

ROLLBACK;

Case 6.1: Deleting an existing element found by position

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 57

JSON_REMOVE() works also for array elements

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> UPDATE T1

 -> SET J = JSON_REMOVE(J, '$.mem5[1]')

 -> WHERE K = 1;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT JSON_EXTRACT(J, '$.mem5') AS mem5 FROM T1 WHERE K=1;

+-------------------------------+

| mem5 |

+-------------------------------+

| [123, true, null, [1, 2], {}] |

+-------------------------------+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.014 sec)

Case 6.2: Deleting all existing elements found by given value

Modifying new version from the stored procedure of pattern 5.2 the implementation of this pattern

was a quite simple task

drop procedure DelElementsOfGivenValue;

DELIMITER //

CREATE PROCEDURE DelElementsOfGivenValue(

 IN json_data JSON,

 IN member_key VARCHAR(255),

 IN given_value VARCHAR(255),

 IN new_value VARCHAR(255))

BEGIN

 DECLARE value VARCHAR(255);

 DECLARE path VARCHAR(255);

 DECLARE array VARCHAR(255);

 DECLARE idx INT DEFAULT 0;

 DECLARE total_elems INT;

 SET path = CONCAT('$.', member_key, '[*]');

 SET array = JSON_EXTRACT(json_data, path);

 SET total_elems = JSON_LENGTH(array); -- ?

 WHILE idx < total_elems DO

 SET path = CONCAT('$.', member_key, '[', idx, ']') ;

 SET value = JSON_EXTRACT(json_data, path);

 CASE value

 WHEN given_value THEN

 UPDATE T1

 SET J = JSON_REMOVE(J, path)

 WHERE K = 1;

 ELSE BEGIN END;

 END CASE;

 SET idx = idx + 1;

 END WHILE;

END;

//

DELIMITER ;

START TRANSACTION;

CALL DelElementsOfGivenValue((SELECT J FROM T1 WHERE K=1), 'mem5', 123, 127);

SELECT * FROM T1 WHERE K=1;

ROLLBACK;

Test run

MariaDB [testdb]> DELIMITER ;

Page 58

MariaDB [testdb]>

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> CALL DelElementsOfGivenValue((SELECT J FROM T1 WHERE K=1), 'mem5', 123,

127);

Query OK, 1 row affected (0.001 sec)

MariaDB [testdb]> SELECT * FROM T1 WHERE K=1;

+---+---

| K | J

+---+---

| 1 | {"mem1": 123, "mem2": "123", "mem3": true, "mem4": null, "mem5": ["123", true, null, [1,

2], {}], "mem6": {"m61": 1, "m62": "123", "m63": true, "m64": null, "m65": [2, 3], "m66": {}}}

|

+---+---

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.000 sec)

Summary

A difference between MySQL and MariaDB is that while MySQL implements true JSON data type, The
JSON data type of MariaDB is just an alias name for LONGTEXT COLLATE utf8mb4_bin. However, the
JSON alias includes automatically JSON_VALID function as its CHECK constraint.

On duplicate keys of object members MariaDB documentation says that only the first key-value will
be effective, as we tested above.

Filter expressions of SQL/JSON proposal are not implemented in MySQL/MariaDB.

Compared with the JSON UPDATE implementations in other DBMS products, the remove operation
of members or elements of Oracle and MySQL/MariaDB are the best implementations.

The list of JSON functions of MySQL and MariaDB provides topics for many study reports!

On UNIQUE KEYS requirement of JSON members

The JSON Data Structure model which we presented in the beginning of this tutorial assumes that
member names (i.e. keys) are unique inside every JSON object. According to IETF JSON specification
RFC 8259 Dec 2017 “The names within an object SHOULD be unique” and continues “.. When the
names within an object are not unique, the behavior of software that receives such an object is un-
predictable.” However, the RFC does not deny possibility of non-unique keys of object members,
and we need to remember that JSON structures in general are applied for data interfacing between
systems.

The possibility of non-unique keys has however consequences apart from software that is not able
to process the JSON content properly:
(1) It is not possible to identify a single member if two or more members have the same key on the
same structural level, for example: { "key1":val, "key1":val }. Because the JSON object is unordered,
we cannot refer to the “first” or “second” member. However, it is possible to have the same key
name on different levels of the JSON object like { "key1": { "key1":val1 } }.
(2) The access and processing software has to deal with two possibilities, either the access addresses
one single element or it receives an unordered collection of elements. In the latter case the collec-
tion may only be processed as a whole in order to yield deterministic results. In the extreme case the

https://archive.org/details/rfc8259

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 59

consequences are that the JSON object can only be handled as a string which would make the JSON
extension of SQL obsolete.

Applying JSON technology as storage structure in databases has special constraint requirements for
this uniqueness case. In the context of database structures the statement needs to be changed into
form “The key names within an object NEED to be unique”. SQL/JSON extends the relational model
into new hybrid model, which needs to be implemented preserving the strict constraint rules, trans-
action and security service, and preventing “unpredictable behavior” on data.

Considering the reasoning above, it is strange that the SQL professionals in ANSI SQL WG3 have
ended up in SQL/JSON proposal Part 2 to present the options of WITH or WITHOUT UNIQUE KEYS5
clauses to the SQL extension, and even worse: “Since enforcing a constraint is costly, the default is
not to check, that is, T.C IS JSON is equivalent to T.C IS JSON WITHOUT UNIQUE KEYS”. In this quote,
the T.C stands for column C in table T, examples used in the SQL/JSON proposal Part 2 paper.

One might argue, that the “WITH UNIQUE KEYS” clause would prevent some external JSON files with
duplicate members from loading to the database, but this is not a reason to break the consistency of
data in the database. We need to understand that the context for JSON in databases is more de-
manding than for JSON files in general. The duplicate members in external JSON files need to be
taken care by the loading interface.

For debating on the issue, we have conducted following series of tests trying to create duplicate
members on top level of a JSON document and testing how JSON queries behave on accessing these.
The tests below show that SQL/JSON implementations at least in current versions of Db2 and Oracle
are built according the UNIQUE KEYS model of JSON members, but other tested RDBMS products
seem to behave differently and will not support the “WITH UNIQUE KEYS” clause, but for PostgreSQL
a workaround has been found:

Db2 for LUW:

Db2 for LUW version 12,1,1 does not recognize the CHECK constraint “IS JSON WITH UNIQUE KEYS” for BLOB-

typed JSON column.

-- Duplicate object members test:

INSERT INTO T1 (K, J) VALUES

(3, JSON_TO_BSON('{ "duplica":"First", "duplica":"Second", "duplica":"Third","du-

plica":"Last"}'));

db2 => INSERT INTO T1 (K, J) VALUES

db2 (cont.) => (3, JSON_TO_BSON('{ "duplica":"First", "duplica":"Second", "du-

plica":"Third","duplica":"Last"}'));

DB21034E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:

SQL16406N JSON data has non-unique keys.

db2 =>

Fine, but by accident we have found the article “JSON - Uniqueness controls for key names” at
https://www.ibm.com/support/pages/json-uniqueness-controls-key-names (on Db2 for i system) say-
ing that the WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS clause has been added to the JSON pub-
lishing functions. Even worse – “JSON behavior is changed to default to allowing duplicate key names
within JSON documents”. This is worrying - do the (young ?) implementers of ‘Db2 for i’ believe that
the SQL/SQL specification needs to be implemented without critics, even on risk of breaking the in-
tegrity of Db2.

5 See the “IS JSON” map of implementations in RDBMS products by Markus Winand

https://www.ibm.com/support/pages/json-uniqueness-controls-key-names

Page 60

Oracle 23ai:

Oracle recommends using the CHECK constraint “IS JSON WITH UNIQUE KEYS” for text-based JSON columns to

avoid inconsistent contents. However, this constraint is automatically included for column based on Oracle’s

native JSON data type, which we are using.

-- Duplicate object members test:

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

SQL> -- Duplicate object members test:

SQL> INSERT INTO T1 (K, J) VALUES

 2* (3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

Error starting at line : 1 in command -

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}')

Error at Command Line : 1 Column : 13

Error report -

SQL Error: ORA-40473: duplicate key names 'duplica' in JSON object

JZN-00007: Object member key 'duplica' is not unique

Help: https://docs.oracle.com/error-help/db/ora-40473/

40473. 00000 - "duplicate key names '%s' in JSON object"

*Cause: The provided JavaScript Object Notation (JSON) data had duplicate

 key names in one object.

*Action: Provide JSON data with unique key names in each JSON object.

SQL Server XE

SQL Server XE does not recognize the constraint IS JSON WITH UNIQUE KEYS. Let’s test what happens when

we enter JSON document having duplicate member keys:

-- Duplicate object members test:

BEGIN TRANSACTION;

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

(1 row affected)

SELECT LEFT(K, 4) AS K, JSON_VALUE(J, '$.duplica') AS Duplica

FROM T1 WHERE K=3;

K Duplica

---- ----------

3 First

(1 row affected)

-- But let’s see them all

SELECT J FROM T1 WHERE K=3;

J

--

{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}

(1 row affected)

-- How about others if the “First” gets removed

UPDATE T1 SET J = JSON_MODIFY(J, '$.duplica', NULL) WHERE K=3;

(1 row affected)

SELECT LEFT(K, 4) AS K, JSON_VALUE(J, '$.duplica') AS Duplica

FROM T1 WHERE K=3;

K Duplica

---- ----------

3 Second

(1 row affected)

-- OK, let’s see them all

SELECT J FROM T1 WHERE K=3;

J

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 61

--

{ "duplica":"Second", "duplica":"Third","duplica":"Last"}

(1 row affected)

ROLLBACK;

Duplicate keys cannot be prevented in SQL Server, the "WITH UNIQUE KEYS" clause has not been im-

plemented yet.

PostgreSQL

Using the following script, we experiment how duplicate object members behave in a PostgreSQL

transaction

BEGIN;

INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

(SELECT J FROM T1 WHERE K=3);

SELECT J->'duplica' AS Duplica FROM T1 WHERE K=3;

(SELECT (JSONB_EACH(J)).* FROM T1 WHERE K=3);

-- How about if the First gets removed

UPDATE T1 SET J = J - 'duplica' WHERE K=3;

SELECT J->'duplica' AS Duplica FROM T1 WHERE K=3;

-- Who are hiding behind?

(SELECT (JSONB_EACH(J)).* FROM T1 WHERE K=3);

(SELECT J FROM T1 WHERE K=3);

ROLLBACK;

Now, applying the script step by step we get following results

testdb=> BEGIN;

BEGIN

testdb=> INSERT INTO T1 (K, J) VALUES

(3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

INSERT 0 1

testdb=*> (SELECT J FROM T1 WHERE K=3);

 j

 {"duplica": "Last"}

(1 row)

testdb=> SELECT J->'duplica' AS Duplica FROM T1 WHERE K=3;

 duplica

 "Last"

(1 row)

This shows that in PostgreSQL the last duplicate is the only one stored, while others are removed.

So, the Last is also the “First”

testdb=> -- How about if the First gets removed

testdb=> UPDATE T1 SET J = J - 'duplica' WHERE K=3;

UPDATE 1

testdb=> SELECT J->'duplica' AS Duplica FROM T1 WHERE K=3;

 duplica

(1 row)

testdb=> (SELECT (JSONB_EACH(J)).* FROM T1 WHERE K=3);

 key | value

-----+-------

(0 rows)

testdb=> (SELECT J FROM T1 WHERE K=3);

Page 62

 j

 {}

(1 row)

testdb=> ROLLBACK;

ROLLBACK

Even after we remove the effective duplicate, the other duplicates remain unavailable in the same

transaction! Reason to this is that on JSONB typed column the last duplica wins while others are removed

automatically without warnings. Is this the service we want? Note that we will silently loose the information

in value parts of those automatically deleted members due to accidently having same key names!

Current version of PostgreSQL support WITH UNIQUE KEYS constraint clause only for the publishing function

JSON_OBJECT().

For JSON column in CREATE TABLE command the UNIQUE KEYS constraint can be created as PL/pgSQL function

to be used in CHECK constraint of the JSON column (solution found by Bing, but source unknown):

CREATE OR REPLACE FUNCTION unique_keys(js json)

RETURNS boolean LANGUAGE plpgsql IMMUTABLE AS $$

DECLARE

 keys text[];

BEGIN

 -- Extract keys

 SELECT array_agg(key) INTO keys

 FROM json_each(js);

 -- Compare array length with distinct length

 RETURN array_length(keys, 1) = (

 SELECT count(DISTINCT k) FROM unnest(keys) AS k

);

END;

$$;

CREATE TABLE T (

K SERIAL PRIMARY KEY,

J JSONB NOT NULL,

CONSTRAINT with_unique_keys CHECK (unique_keys(J))

);

The big difference between these UNIQUE KEYS protection is that while the just trusting on the silent JSONB

automatic deletion of first duplicas, the alternative of CONSTRAINT prevention from duplicate keys will generate

error message and abort the whole PostgreSQL transaction, but this the right solution!.

MariaDB

MariaDB does not recognize the constraint IS JSON WITH UNIQUE KEYS. Let’s test what happens when we

enter JSON document having duplicate member keys:

MariaDB [testdb]> -- Duplicate object members test:

MariaDB [testdb]> START TRANSACTION;

Query OK, 0 rows affected (0.000 sec)

MariaDB [testdb]> INSERT INTO T1 (K, J) VALUES

 -> (3, '{ "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"}');

Query OK, 1 row affected (0.000 sec)

MariaDB [testdb]> SELECT LEFT(K, 4) AS K, JSON_VALUE(J, '$.duplica') AS Duplica

 -> FROM T1 WHERE K=3;

+------+---------+

| K | Duplica |

+------+---------+

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 63

| 3 | First |

+------+---------+

1 row in set (0.000 sec)

MariaDB [testdb]> -- But, let’s see them all

MariaDB [testdb]> SELECT J FROM T1 WHERE K=3;

+--+

| J |

+--+

| { "duplica":"First", "duplica":"Second", "duplica":"Third","duplica":"Last"} |

+--+

1 row in set (0.000 sec)

MariaDB [testdb]> -- How about others if the “First” gets removed

MariaDB [testdb]> UPDATE T1 SET J = JSON_REMOVE(J, '$.duplica') WHERE K=3;

Query OK, 1 row affected (0.000 sec)

Rows matched: 1 Changed: 1 Warnings: 0

MariaDB [testdb]> SELECT LEFT(K, 4) AS K, JSON_VALUE(J, '$.duplica') AS Duplica

 -> FROM T1 WHERE K=3;

+------+---------+

| K | Duplica |

+------+---------+

| 3 | Second |

+------+---------+

1 row in set (0.000 sec)

MariaDB [testdb]> -- OK, let’s see them all

MariaDB [testdb]> SELECT J FROM T1 WHERE K=3;

+--+

| J |

+--+

| {"duplica": "Second", "duplica": "Third", "duplica": "Last"} |

+--+

1 row in set (0.000 sec)

MariaDB [testdb]> ROLLBACK;

Query OK, 0 rows affected (0.001 sec)

The current MariaDB version does not support WITH UNIQUE KEYS clause.

Summary – A Critique of SQL/JSON

In the Abstract of ANSI SQL WG3 in SQL/JSON Part 1 proposal the WG3 says “It is important that SQL

respond to the requirement to support JSON data by providing facilities for storage, retrieval, query-

ing, and manipulation of JSON data in the context of SQL”. In 1.1.8.3 “Updating JSON data” the WG3

says on updating mechanisms “..is beyond the scope of the present proposal and may be addressed

in some future proposal”.

Postponing the updating part of SQL/JSON standard, criticised also by Petkovic (2020), has led to

“Babel effect” messing among the JSON implementations, which we have seen in our experiments

on various RDBMS products on solutions for the technical update patterns of the JSON data model.

Some solutions are now quite complicated, and we welcome ideas for better solutions.

While even some parts of the SQL/JSON standard have not yet been implemented in all mainstream

RDBMS products, some maintenance functions seem to become popular. Also, even late introduc-

tion of language standardisation is not a catastrophe, as proven by PostgreSQL adaption of

SQL/JSON functions alongside their earlier JSON query implementation. So, we have reason to ex-

pect SQL/JSON 2.0 (?) standard, to be extended by JSON data manipulation language part.

Page 64

Acknowledgements

We thank prof. Stephen J. Hegner on his PostgreSQL PL/pgSQL examples, observations and solutions on JSON

structure manipulation. In fact, much of this tutorial is credit to him.

We thank also Mark Gillis at Triton Consulting UK on Db2 advice, Timo Leppänen at Oracle Finland on Oracle

23ai information, and Tim Hall at ORACLE-BASE on Oracle-Relational Duality examples.

References

Baklarz G., Bird P., "Db2 Version 11 JSON Highlights", 2019, Db2V11-JSON-ebook.pdf at
https://ibm.ent.box.com/s/g6gxnq9l3se03vgjkcrp27f68c7bxpur

ECMA, “The JSON Data Format”, Standard ECMA-404, 2013, https://ecma-international.org/wp-content/up-
loads/ECMA-404_1st_edition_october_2013.pdf

Gillis M., "Messing with JSON data in Db2", 2023, https://www.triton.co.uk/messing-with-json-data-in-db2/

Gugnani S., et al. “JSON Relational Duality: A Revolutionary Combination of Document, Object, and Relational
Models”, SIGMOD 2025, https://dl.acm.org/doi/pdf/10.1145/3722212.3724441

Hall T., “JSON_TRANSFORM in Oracle Database 21c”, at https://oracle-base.com/articles/21c/json_transform-
21c

IETF, “The JavaScript Object Notation (JSON) Data Interchange Format”, Dec 2017, RFC 8259 at
https://www.rfc-editor.org/rfc/rfc8259

ISO/IEC, “Part 6: Support for JSON”, iTeh STANDARD PREVIEW at https://cdn.standards.iteh.ai/sam-
ples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf

ISO, “Part 8: Specification of JavaScript Object Notation Encoding Rulers” at ISO Online Browsing Platform
(OBP) at https://www.iso.org/obp/ui#iso:std:iso-iec:8825:-8:ed-2:v1:en:term:3.7.7

JSON.org, “Introducing JSON”, https://www.json.org/json-en.html

JSON.org, “The application/json Media Type for JavaScript Object Notation (JSON)”, RFC 4627

Liu Z. H., et al., “Closing the functional and Performance Gap between SQL and NoSQL”, SIGMOD 2016,
https://dl.acm.org/doi/pdf/10.1145/2882903.2903731

Liu Z. H., et al., “Native JSON Datatype Support: Maturing SQL and NoSQL convergence in Oracle Database”,
Proceedings of VLDB, Vol 13 No 12, 2020, https://dl.acm.org/doi/10.14778/3415478.3415534

Melton J, et al., "ANSI SQL/JSON: part 1", Mar 4 2014, at
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf

NEON, “PostgreSQL JSON”, PostgreSQL Tutorial at https://neon.com/postgresql/postgresql-tutorial/post-
gresql-json

NEON, “PostgreSQL JSON Extract”, https://neon.com/postgresql/postgresql-json-functions/postgresql-json-
extract

NEON, “PostgreSQL JSON Path”, https://neon.com/postgresql/postgresql-json-functions/postgresql-json-path

Oracle Help Center, “11 Oracle SQL Function JSON_TRANSFORM”, JSON Developer’s Guide, at
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_trans-
form.html

https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://ecma-international.org/wp-content/uploads/ECMA-404_1st_edition_october_2013.pdf
https://dl.acm.org/doi/pdf/10.1145/3722212.3724441
https://oracle-base.com/articles/21c/json_transform-21c
https://oracle-base.com/articles/21c/json_transform-21c
https://cdn.standards.iteh.ai/samples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf
https://cdn.standards.iteh.ai/samples/78937/ec0892ead0034dfca333cd75bb5f348b/ISO-IEC-19075-6-2021.pdf
https://www.json.org/json-en.html
https://dl.acm.org/doi/pdf/10.1145/2882903.2903731
https://dl.acm.org/doi/10.14778/3415478.3415534
https://www.wiscorp.com/pub/DM32.2-2014-00024R1_JSON-SQL-Proposal-1.pdf
https://neon.com/postgresql/postgresql-tutorial/postgresql-json
https://neon.com/postgresql/postgresql-tutorial/postgresql-json
https://neon.com/postgresql/postgresql-json-functions/postgresql-json-extract
https://neon.com/postgresql/postgresql-json-functions/postgresql-json-extract
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_transform.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_transform.html

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 65

Oracle Help Center, “17.2 SQL/JSON Path Expression Syntax”, JSON Developer’s Guide, at
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/sql-json-path-expression-syn-
tax.html#GUID-AEBAD813-99AB-418A-93AB-F96BC1658618

Petkovic D., “Implementation of JSON Update Framework in RDBMSs“, Feb 2020, at
https://www.researchgate.net/publication/339331359_Implementation_of_JSON_Update_Frame-
work_in_RDBMSs,

Petkovic D., “SQL/JSON Standard: Properties and Deficiencies”, Oct 24 2017, at
https://www.researchgate.net/publication/320594498_SQLJSON_Standard_Properties_and_Deficiencies

PostgreSQL.org, “9.16. JSON Functions and Operators”, 2025, at https://www.postgresql.org/docs/cur-
rent/functions-json.html

PostgreSQL.org, “Chapter 41. PL/pgSQL - SQL Procedural Language”, 2025, at https://www.post-
gresql.org/docs/17/plpgsql.html

Zemke F, et al., "SQL/JSON: part 2 - Querying JSON", Mar 4 2014, at
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf

Wikipedia, “JSON” at https://en.wikipedia.org/wiki/JSON

Wikipedia, “PostgreSQL” at https://en.wikipedia.org/wiki/PostgreSQL

Winand M. , “A Lot Has Changed Since SQL-92” see the map of IS JSON implementations in RDBMS products, at

https://modern-sql.com/caniuse/is-json

DataCamp, “PostgreSQL Querying & Filtering JSON Fields” at https://www.datacamp.com/doc/postgresql/que-
rying-&-filtering-json-fields

* * *

We have covered related issues also in some of our earlier DBTechNet papers:

Laiho M., “Getting Started with DBTechLab VM”, 2024

 - RDBMSs, open source programming languages and tools

Laiho M., Laux F., et al., “SQL Transactions” – Theory and hands-on exercises, 2012,

 at https://dbtechnet.org/documents/?dir=67

 - basics of SQL transaction, language versions

Laiho M., Laux F., et al. “SQL Stored Routines”, 2016

 - Db2 stored procedures, etc

Laiho M., Kurki M., et al. “Introduction to Transaction Programming”, 2019

 . data access APIs and transaction protocols

Laiho M., “MongoDB Transactions”, 2025

 - Native JSON database

Laiho M., Laux F., et al. “XML, SQL/XML and the Big Three”, 2011
 - XPath expressions

https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-json.html
https://www.wiscorp.com/pub/DM32.2-2014-00025r1-sql-json-part-2.pdf
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/PostgreSQL
https://www.datacamp.com/doc/postgresql/querying-&-filtering-json-fields
https://www.datacamp.com/doc/postgresql/querying-&-filtering-json-fields
https://drive.google.com/file/d/1JuRdWO_UcrzJm_2q3cdapNqW69_1WvO4/view?usp=sharing
https://dbtechnet.org/documents/?dir=67
https://drive.google.com/file/d/195JHQUONAi2umFdDIswA3CD1NQ3_KQjp/view?usp=sharing
https://drive.google.com/file/d/1baFtZbxHMpzkCOeVRBbqs_-YlQbxFxk_/view?usp=sharing
https://drive.google.com/file/d/1cp0v04Vc24HFiBp6hrF4DLlLKCyup-vs/view?usp=drive_link
https://drive.google.com/file/d/191LxEQpKOFvK7AC7-FdMo8ssCC3hb8FP/view?usp=drive_link

Page 66

Index

array, 3
binary, 15, 32
cast, 15
cast operator, 32
CTE, 30
duplicate, 3
element, 3
escaped characters, 2
extract operator, 33
extract operators, 32
field, 3
Filter expressions, 15
IS JSON WITH UNIQUE KEYS, 59
IS JSON WITHOUT UNIQUE KEY, 59
JSON document, 3
JSON_TRANSFORM, 15
JSONB, 32
key/value pair, 3
literal, 2
member, 3
name/value pair, 3

nestable, 2
number, 2
numeric, 15
object, 3
OPENJSON, 25
OSON, 15
path, 25
path expression, 4, 15, 32
PL/pgSQL, 36, 38, 42
pretty print, 33
property, 3
scalar, 2
string, 2
type cast, 32
type-sensitive, 32
unique, 3
UNIQUE KEYS, 58
UNIQUE KEYS model, 59
WITH clause, 25
WITH UNIQUE KEYS, 59

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 67

Appendix 2 Counting number of object members on top level?

For the algorithm of updating values or removing ALL members found by value, browsing [0..max] of the JSON

member list in Cases 2.2, 3.2, etc. in the Appendix 1, we need to sort out the count of members and elements.

In fact, Db2 SQL/JSON is the only one for which we have not yet found general solution for these ALL cases.

The solutions of the other RDBMS systems present interesting variations for this simple topic.

Db2 for LUW

This can be solved based on the JSON_KEYS function which we have implemented as external stored proce-

dure written in C language, see Appendix 3.

Oracle 23ai

SQL> SELECT MAX(idx) AS count_members

 2 FROM (SELECT jt.idx

 3 FROM T1,

 4 JSON_TABLE(J, '$.*'

 5 COLUMNS (

 6 idx FOR ORDINALITY

 7)

 8) jt

 9* WHERE T1.K=1);

 COUNT_MEMBERS

 6

SQL Server

DECLARE @json VARCHAR(1000)

SELECT @json=J FROM T1 WHERE K= 1;

SELECT COUNT(*) AS MemberCount

FROM OPENJSON(@json);

MemberCount

6

(1 row affected)

PostgreSQL

testdb=> SELECT jsonb_object_keys(J)

FROM T1 WHERE K=1;

 jsonb_object_keys

 mem1

 mem2

 mem3

 mem4

 mem5

 mem6

(6 rows)

testdb=> SELECT COUNT(*) FROM

(SELECT jsonb_object_keys(J)

FROM T1 WHERE K=1);

 count

Page 68

 6

(1 row)

MariaDB:

MariaDB [testdb]> SELECT K, JSON_LENGTH(J) AS count_members

 -> FROM T1 WHERE K=1;

+---+---------------+

| K | count_members |

+---+---------------+

| 1 | 6 |

+---+---------------+

1 row in set (0.009 sec)

Appendix 3 Implementing JSON_KEYS function to Db2 for LUW?

JSON_KEYS function is not included in SQL/JSON standard, but It has been implemented in MySQL/MariaDB,

PostgreSQL, and some DBMS products outside our JSON experiments. Sean Stuber reports on his PL/SQL func-

tion for listing the keys in Oracle SQL/JSON. In SQL Server a solution can be based on OPENJSON function.

The JSON_KEYS function lists the key names on top of a JSON object. The listing provides basis for accessing all

top-list members of the JSON document providing means for accessing the corresponding value contents. As

such it is a key function for implementing the JSON update patterns for Cases 2.2, 3.2 for Db2 LUW in the Ap-

pendix 1.

The missing JSON_KEYS() function of Db2 LUW could be implemented by PYTHON subprogram applying the

following

>>> myjson = {"mem1":123,"mem2":"123","mem3":true,"mem4":null,"mem5": [123, "123", true, null, [1, 2], {}],"mem6":

{ "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2, 3], "m66":{} }}

>>> print(myjson.keys())

dict_keys(['mem1', 'mem2', 'mem3', 'mem4', 'mem5', 'mem6'])

>>>

but the Python interface needs to be sorted out somehow. The Python support for Db2 LUW has been availa-

ble for some years, and unofficial instructions are available in GitHub at https://github.com/ibmdb/python-

ibmdb.

While experimenting with the JSON on Python we found out that Python requires JSON literals “true” and “false”

to start by upper case letters “True” and “False”, and it doesn’t accept the literal “null”, but for JSON_KEYS()

function we don’t need to care about these.

Implementing JSON_KEYS as external routine written in C language

Finally, we decided to implement the JSON_KEYS function to Db2 for LUW using external routine written in C
installed in Windows DLL file to be accessed by wrapper interface to build the JSON update pattern Case 2.2
for Db2 LUW.

https://github.com/ibmdb/python-ibmdb
https://github.com/ibmdb/python-ibmdb

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 69

Figure x. Building of the JSON_KEYS function for Db2 LUW

For the C-compiler to Windows 11 platform we installed the GNU gcc port MinGW-w64. Then compiling our

JSON_KEYS.c code into DLL file by

gcc -shared -Os -s -o JSON_KEYS.dll JSON_KEYS.c

The interface of the generic JSON_KEYS function for limited sizes in C is following

void JSON_KEYS (char json[4001], char keys[401])

The algorithm of collecting the key names of all top-level members from a JSON document, skipping the vari-

ous value types and nested parts is quite complicated and required many test rounds, so before the final test

rounds a hosting test program was coded and tested step by step separately from the DLL file.

Disclaimer:

The compiled DLL file is available ZIPped at JSON_KEYS.zip without any guarantees, but

passed in all our tests.

We leave programming of the corresponding code as exercise for interested readers.

The JSON_KEYS function in DLL can be accessed as external stored procedure of Db2, by creating the interface

as follows

CREATE OR REPLACE PROCEDURE JSON_KEYS (

 IN json VARCHAR(1000),

 OUT keys VARCHAR(400))

 SPECIFIC JSON_KEYS_F

 EXTERNAL NAME 'C:\Users\Martti\JSON_KEYS.dll'

 FENCED

 LANGUAGE C

 PARAMETER STYLE GENERAL

 NO SQL

 DETERMINISTIC EXTERNAL ACTION;

Note: The EXTERNAL NAME clause needs to be updated to reference the directory where the DLL file is stored.

The implementation of the DLL for use of an external procedure turned out to be a tricky process. When an

external Db2 procedure is created, the DLL file becomes reserved, and it is impossible to update or even de-

lete. To replace the DLL file with a new version, we applied following steps in Db2 session and Command

Prompt window of Windows (in standalone environment without any concurrent use):

Db2:
DROP PROCEDURE JSON_keys;

https://drive.google.com/file/d/1EH2DLfqHiVNTqDFqy2eg6zx3g9YkuCW7/view?usp=drive_link

Page 70

COMMIT;

FORCE APPLICATION ALL;

QUIT;

Command Prompt:
DEL JSON_KEYS.dll

The error message “Access is denied.” was solved by restarting the whole Windows server. This of course, is

not possible in production environment. The problem is avoided by compiling new version of the DLL file using

name versioning for the DLL file as follows and then deleting the old version of DLL file

Creating the interface (wrapper procedure)

db2 => CREATE OR REPLACE PROCEDURE JSON_KEYS (

db2 (cont.) => IN json VARCHAR(1000),

db2 (cont.) => OUT keys VARCHAR(400))

db2 (cont.) => SPECIFIC JSON_KEYS_0_1

db2 (cont.) => EXTERNAL NAME 'C:\Users\Martti\JSON_KEYS_0_1.dll'

db2 (cont.) => FENCED

db2 (cont.) => LANGUAGE C

db2 (cont.) => PARAMETER STYLE GENERAL

db2 (cont.) => NO SQL

db2 (cont.) => DETERMINISTIC EXTERNAL ACTION;

DB20000I The SQL command completed successfully.

db2 => COMMIT;

DB20000I The SQL command completed successfully.

Testing the procedure in Db2 CLP session:

db2 => CALL JSON_KEYS('[{"mem1": 123,"mem2": "123"}]', ?);

 Value of output parameters

 Parameter Name : KEYS

 Parameter Value : ["mem1","mem2"]

 Return Status = 0

Testing with the JSON of test case K=1

db2 => CALL JSON_KEYS('[{"mem1":123,"mem2":"123","mem3":true,"mem4":null,"mem5": [123, "123",

true, null, [1, 2], {}],"mem6": { "m61":1, "m62":"123", "m63": true, "m64": null, "m65":[2,

3], "m66":{ } }}]', ?);

 Value of output parameters

 Parameter Name : KEYS

 Parameter Value : ["mem1","mem2","mem3","mem4","mem5","mem6"]

 Return Status = 0

Testing with the JSON of test case K=2

db2 => CALL JSON_KEYS('[{"mem1": 123,"mem2": "123","mem3": true,"mem4": null,"mem5": [123,

"123", "string", true, 123, 124, 124, null, [1, 2], {}, 123],"mem6": { "m61":1, "m62":"123",

"m63": true, "m64": null, "m65":[2, 3], "m66":{} },"mem7": 123,"mem8": "123"}]}]', ?);

 Value of output parameters

 Parameter Name : KEYS

 Parameter Value : ["mem1","mem2","mem3","mem4","mem5","mem6","mem7","mem8"]

 Return Status = 0

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 71

Creating the JSON_KEYS() function

Next, we created the SQL interface function for accessing the procedure

CREATE TYPE stringArray AS VARCHAR(20) ARRAY[100];

COMMIT;

--#SET TERMINATOR @

CREATE OR REPLACE FUNCTION JSON_KEYS

 (IN kp INT,

 IN json VARCHAR(1000)

)

RETURNS stringArray

DETERMINISTIC

LANGUAGE SQL

SPECIFIC JSON_KEYS_F

BEGIN

 DECLARE keys stringArray;

 DECLARE ind INTEGER;

 DECLARE keyList VARCHAR(400);

 DECLARE key VARCHAR(20);

 SET keys = ARRAY[];

 SET ind = 1;

 -- SET keyList = '"mem1","mem2","mem3","mem4","mem5","mem6"';

 CALL JSON_KEYS(json, keyList); -- already tested to work properly

 SET keyList = REPLACE(keyList, '[', ''); -- removing the square brackets

 SET keyList = REPLACE(keyList, ']', ''); -- to enable the use "ARRAY{?]

 WHILE (LENGTH(keyList) > 0) DO

 SET key = SUBSTR(keyList, 1,

 COALESCE(NULLIF(LOCATE(',', keyList) - 1, -1),

 LENGTH(keyList)));

 IF (LOCATE(',', keyList) > 0) THEN

 SET keyList = SUBSTR(keyList, LOCATE(',', keyList) + 1);

 ELSE

 SET keyList = '';

 END IF;

 SET keys[ind] = key;

 SET ind = ind+1;

 END WHILE;

 RETURN keys;

END;

@

--#SET TERMINATOR ;

-- testing the JSON_KEYS() function

SELECT t.id, t.key

FROM UNNEST(JSON_KEYS(1, '[{"mem1":123,"mem2":231}]'))

WITH ORDINALITY AS t(key, id);

db2 => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST(JSON_KEYS(1, '[{"mem1":123,"mem2":231}]'))

db2 (cont.) => WITH ORDINALITY AS t(key, id);

ID KEY

----------- --------------------

 1 "mem1"

 2 "mem2"

 2 record(s) selected.

db2 => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST(JSON_KEYS(1, (SELECT JSON_QUERY(J, '$') FROM T1 WHERE K=1)))

db2 (cont.) => WITH ORDINALITY AS t(key, id);

ID KEY

----------- --------------------

 1 "mem1"

 2 "mem2"

Page 72

 3 "mem3"

 4 "mem4"

 5 "mem5"

 6 "mem6"

 6 record(s) selected.

db2 =>

Creating test version for the Case 2.2

Now that we have implemented the JSON_KEYS() function for Db2 for LUW on Windows, it is time to

apply it for our JSON maintenance cases. We will use cursor programming to browse thru the list of

keys found by the JSON_KEYS() function,
db2 => DECLARE keycurs CURSOR FOR

db2 (cont.) => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST(JSON_KEYS((SELECT JSON_QUERY(J, '$') FROM T1 WHERE K=1)))

db2 (cont.) => WITH ORDINALITY AS t(key, id)

db2 (cont.) => FOR FETCH ONLY

db2 (cont.) => WITH UR;

DB20000I The SQL command completed successfully.

db2 => OPEN keycurs;

DB20000I The SQL command completed successfully.

db2 => FETCH keycurs;

ID KEY

----------- --------------------

 1 "mem1"

 1 record(s) selected.

. . .

db2 => CLOSE keycurs;

DB20000I The SQL command completed successfully.

and by the current key we read the value of the corresponding member. If the value matches with

the given value for processing of the Case, then the member will be updated or deleted depending

on the Case.

--#SET TERMINATOR @

CREATE OR REPLACE PROCEDURE Case2_2

 (IN kp INT,

 IN given_value VARCHAR(100),

 IN new_value VARCHAR(100),

 -- OUT parameters are meant only for testing purposes:

 OUT id INT,

 OUT mem_Name VARCHAR(20),

 OUT old_value VARCHAR(100),

 OUT json_out VARCHAR(1000)

)

SPECIFIC Case2_2

LANGUAGE SQL

BEGIN ATOMIC

 DECLARE json VARCHAR(1000);

 DECLARE memCount INT;

 DECLARE memName VARCHAR(20);

 DECLARE oldValue VARCHAR(1000);

 DECLARE sqlcode INT DEFAULT 0;

 DECLARE keycurs CURSOR FOR

 SELECT t.id, t.key

 FROM UNNEST(JSON_KEYS((SELECT JSON_QUERY(J, '$') FROM T1 WHERE K=kp)))

 WITH ORDINALITY AS t(key, id)

 FOR FETCH ONLY

 WITH UR;

 SELECT BSON_TO_JSON(J) INTO json FROM T1 WHERE K = kp;

DBTechLab SQL/JSON on RDBMS Databases draft 2025-12-29 ML, SJH, FL, KS

Page 73

 set json_out = json; -- only for tracing

 -- Loop through the JSON members

 OPEN keycurs;

 WHILE sqlcode = 0 DO

 FETCH keycurs INTO id, memName; -- Extract the value at the current index

 set mem_Name = memName; -- only for tracing

 SET memName = REPLACE(memName, '"', '');

 SELECT JSON_QUERY(J, '$.' || memName || ' ') INTO oldValue

 FROM T1 WHERE K = kp;

 set old_Value = oldValue; -- only for tracing

 -- Check if the value matches '123'

 IF (oldValue = given_value) THEN

 UPDATE T1

 SET J = SYSTOOLS.JSON_UPDATE(J, '{$set: {' || memName || ': ' || new_value || '}} ')

 WHERE K = kp;

 END IF;

 -- return; -- stop for tracing

 END WHILE;

END;

@

--#SET TERMINATOR ;

We can now apply test version of the Case 2.2 by reading the output parameters by questions marks

as follows:

CALL Case2_2 (1, '123', '127', ?, ?, ?, ?);

db2 => CALL Case2_2 (1, '123', '127', ?, ?, ?, ?);

 Value of output parameters

 Parameter Name : ID

 Parameter Value : 6

 Parameter Name : MEM_NAME

 Parameter Value : mem6

 Parameter Name : OLD_VALUE

 Parameter Value : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null, "m65" : [2, 3],

"m66" : { } }

 Parameter Name : JSON_OUT

 Parameter Value : { "mem1" : 123, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [

123, "123", true, null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true,

"m64" : null, "m65" : [2, 3], "m66" : { } } }

 Return Status = 0

db2 =>

Note: the JSON_OUT parameter shows the original json, whereas we need to check the updated

document by JSON_QUERY as follows:

db2 => SELECT cast(K as smallint) as k,

db2 (cont.) => JSON_QUERY(J, 'strict $' RETURNING VARCHAR(1000)) as result

db2 (cont.) => FROM T1 WHERE K=1;

K RE-

SULT

------ ---

 1 { "mem1" : 127, "mem2" : "123", "mem3" : true, "mem4" : null, "mem5" : [123, "123",

true, null, [1, 2], { }], "mem6" : { "m61" : 1, "m62" : "123", "m63" : true, "m64" : null,

"m65" : [2, 3], "m66" : { } }

}

 1 record(s) selected.

db2 => rollback;

Page 74

DB20000I The SQL command completed successfully.

How about keys of nested objects?

db2 => SELECT t.id, t.key

db2 (cont.) => FROM UNNEST(JSON_KEYS((SELECT JSON_QUERY(J, '$.mem6') FROM T1 WHERE K=1)))

db2 (cont.) => WITH ORDINALITY AS t(key, id);

ID KEY

----------- --------------------

 1 "m61"

 2 "m62"

 3 "m63"

 4 "m64"

 5 "m65"

 6 "m66"

 6 record(s) selected.

db2 =>

As our JSON_KEYS() now works, we can proceed by removing the output variables and implement

the Case 2.2 and Case 3.2.

References

GitHub, “Python support for IBM Db2 for LUW and IBM Db2 for z/OS”,

https://github.com/ibmdb/python-ibmdb

Silpiö K., “C-KIELI”, 1992, ATK-instituutti

- great source of C language for Finnish readers

Stuber S. D., “How to create a PL/SQL function to iterate JSON Keys for SQL”, 2024, https://seanstu-

ber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/

Wikipedia, “Mingw-w64”, at https://en.wikipedia.org/wiki/Mingw-w64

https://github.com/ibmdb/python-ibmdb
https://seanstuber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/
https://seanstuber.com/2024/03/02/how-to-create-a-pl-sql-function-to-iterate-json-keys-for-sql/
https://en.wikipedia.org/wiki/Mingw-w64

